
Project TIDAL Module 1.3: Data Analytics Using R

1.3.1: Introduction to R and R Studio
(Asynchronous-Online)

Session Objectives

1. Get acquainted with R and R Studio
2. Write simple R code in Console
3. Create your first R script
4. Install and load R packages (understanding your R session)
5. Create your first R Markdown report and produce output files in different formats

(HTML, PDF, or DOCX)

0. Prework - Before You Begin

R versus RStudio

Note: R is the name of the programming language itself and RStudio is an integrated
development environment (IDE) which is an enhanced interface for better organization,
files management and analysis workflows.

Software and Applications to Download

1. FIRST, Download and install R onto your computer from https://cran.r-project.org/.
2. NEXT, After installing R, download and install RStudio Desktop onto your computer

from https://posit.co/download/rstudio-desktop/.

emorytidal.netlify.app 1

https://www.project-tidal.org/
https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

1. Get aquainted with R and R Studio

Basic R

When you download R from CRAN and install it on your computer, there is an R application
that you can run. However, it is very bare bones. Here is a screenshot of what it looks like on
my computer (Windows 11 operating system).

You can type commands in the console window at the prompt “>” but this is slow and tedious.
You can also write and execute scripts from inside this application and see the output back in
the console window as well as creating plots. But managing large projects using this interface
is not efficient.

emorytidal.netlify.app 2

https://www.project-tidal.org/
https://cran.r-project.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 3

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

RStudio IDE

RStudio Desktop Software vs Posit the company

RStudio was founded in 2009 https://posit.co/about/ when it published the “free and
open source” RStudio software. But over time, the RStudio application has expanded
beyond just being used for the R programming language. You can now use RStudio for
writing and managing projects with Python code, Markdown, LaTeX, Cascading Style
Sheets and more.

So, in 2022, RStudio the company became Posit https://posit.co/blog/rstudio-is-
becoming-posit/ to encompass the broader computing community.

The RStudio Integrated Development Environment (IDE) application provides much better
tools for managing files within a given “project”. This biggest advantage of working in an IDE
is everything is contained and managed within a given project, which is linked to a specific
folder (container) on your computer (or cloud drive you may have access to).

However, you will still need to write and execute code using scripts and related files. An IDE
is NOT a GUI (graphical user interface) which is the “point and click” workflow you may have
experience with if you’ve used other analysis software applications such as SPSS, SAS Studio,
Excel and similar.

The interface is usually arranged with the following 4 “window panes”:

emorytidal.netlify.app 4

https://www.project-tidal.org/
https://posit.co/about/
https://posit.co/blog/rstudio-is-becoming-posit/
https://posit.co/blog/rstudio-is-becoming-posit/
https://posit.co/download/rstudio-desktop/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

• Console
• Source
• Environment
• Files

emorytidal.netlify.app 5

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

The typical arrangement, usually has the “Console” window pane at the bottom left. This
window also usually has TABs for the “Terminal” and any “Background Jobs” that might be
running.

emorytidal.netlify.app 6

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

The “Source” window pane is usually at the top left. This is where you will do most of your
editing of your R program scripts (*.R) or Rmarkdown files (*.Rmd). This is also where the
data viewer window will open. You can also open and edit other kinds of files here as well
(*.tex, *.css, *.txt, and more).

emorytidal.netlify.app 7

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

The top right window pane should always have your “Environment”, “History” and “Tutorial”
TABs but may also have TABs for “Build” and “Git” and others depending on your project
type and options selected.

emorytidal.netlify.app 8

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

The bottom right window pane has TABs for your:

• “Files” directory
• “Plots” window for graphical output
• “Packages” - which lists all add-on R packages installed on your computer
• “Help” window
• as well as other TABs for “Viewer” and “Presentation” for viewing other kinds of output.

emorytidal.netlify.app 9

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Customizing your RStudio interface

You also have the option to rearrange your window panes as well as change the look and feel
of your programming interface and much more. To explore all of your options, click on the
menu at the top for “Tools/Global Options”:

emorytidal.netlify.app 10

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Take a look at the left side for the list of all of the options. Some of the most useful options
to be aware of are:

• General
• Appearance, and
• Pane Layout

emorytidal.netlify.app 11

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

In the “General” TAB is where you can see and confirm that R is installed and where the R
programming language executable is installed on your computer.

emorytidal.netlify.app 12

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

You will probably want to explore fine-tuning these parameters to customize the appearance of
your RStudio preferences. For example, you can change the ZOOM level to improve readability.
You may also want to change the FONT sizes for the Editor and Help windows as needed.

ZOOM + FONT

When making changes to your RStudio interface appearance, be aware that ZOOM and
FONT size settings work together, so you may need to play around with the settings that
work best for your monitor or device you are using.

I also encourage you to try out different “Editor Themes” which will change the colors of the
R code as well as background colors (light or dark).

emorytidal.netlify.app 13

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

The default “Editor Theme” is textmate.

emorytidal.netlify.app 14

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

But here is an example of changing the theme to “Tomorrow Night Blue”.

emorytidal.netlify.app 15

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

I would also suggest NOT changing the layout of the window panes until you are very familiar
with the default settings. But in “Pane Layout” is where you can see what the default layout
settings are and what other options are available to you.

emorytidal.netlify.app 16

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

2. Write simple R code in Console

Simple math

So, let’s start with some simple R code using the Console window and typing commands at
the > prompt (which is the greater than symbol).

You can write simple math expressions like 5 + 5.

5 + 5

[1] 10

Notice that the output shows the number 1 enclosed in square brackets [] followed by the
answer (or output) of 10.

This is because R performed the addition operation using the + operator and then “saved” the
output in temporary memory as a scalar object with 1 element, which is the number 10.

You can actually see this temporary object by typing .Last.value - which is only temporary
and will be overwritten after the execution of the next R command.

.Last.value
[1] 10

emorytidal.netlify.app 17

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

However, if we look at our current computing environment (see “Global Environment” upper
right window pane), it is still showing as empty.

This is because we have not yet “saved” the output into an object that we created. Let’s save
the output from 5 + 5 into an object called ten.

To do this we need to do 2 things:

1. Create the object called ten by
2. Using the “assign” operator <- to take the result of 5 + 5 and move it (save it or pipe

it) into the object ten.

ten <- 5 + 5

emorytidal.netlify.app 18

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

TL;DR What is the Assign Operator <-?

The “R” language is actually a derivative of the original “S” language which stood for
the “language of statistics” - it was written by statisticians for statisticians (and now
data scientists). The original S language was written in the mid-1970’s by program-
mers/statisticians at Bell Labs/AT&T.

The <- actually comes from the physical key on their “APL” keyboards, for the APL
programming language they were using at Bell Labs.

A Nice Blog Post on the History of <-

To “see” the output of this object called ten - you can either see it now in your Global
Environment or type the object name in the Console to view it.

ten

[1] 10

It is important to remember that R is an “object-oriented” programming language - everything
in R is an object.

emorytidal.netlify.app 19

https://www.project-tidal.org/
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)
https://colinfay.me/r-assignment/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Built in constants

There are several built in “constants” in R. Try typing these in at the Console to see the
results.

pi

[1] 3.141593

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r"
"s"
[20] "t" "u" "v" "w" "x" "y" "z"

LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R"
"S"
[20] "T" "U" "V" "W" "X" "Y" "Z"

month.name

[1] "January" "February" "March" "April" "May" "June"
[7] "July" "August" "September" "October" "November" "December"

R is Case Sensitive!

A pro and con of the R language is that it is case sensitive. Lower case x and uppercase
X are different objects. As seen above, the lowercase letters object is a vector of the
26 lowercase letters, whereas LETTERS is a different object vector of the 26 uppercase
letters. Be on the lookout for case sensitive spelling and formatting of object, package
and function names in R.

For the constants like letters you get a list of the 26 lower case letters in the alphabet. Notice
that the number in [square brackets] updates for each new line printed out. This allows you
to keep track of the number of elements in the output object. letters is an “character” array
(or vector) with 26 elements.

To confirm these details, we can use the class() function to determine that the letters
object has all “character” elements. The length() function will let you know that there are
26 elements.

emorytidal.netlify.app 20

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

class(letters)

[1] "character"

length(letters)

[1] 26

emorytidal.netlify.app 21

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Getting help

If you would like to learn more about these built-in “constants”, you can get help in one of
two ways. You can either type help(pi) in the “Console” (lower left) or type pi in the “Help”
window (lower right).

help(pi)

The help() function defaults to searching for a built-in object, function or dataset by default
in the base R package. But some functions may exist in multiple packages, so it is always a
good idea to add the package when running the help() function if possible.

Since pi is in the base R package, it would be better to run:

help(pi, package = "base")

If you have no idea what package a function may be in, you can use the ?? search operator.
For example, many packages include a plotting related function. If you want to see how
many R packages currently installed on your computer have a plot related function, type the
following:

??plot

emorytidal.netlify.app 22

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Try out a built-in R function

The majority of the R programming language is driven by functions. Technically the + operator
is actually a function that performs a sum.

You can even get help on these operators, by typing help("+"). We have to add the quotes
"" so that R knows we are looking for this operator and not trying to perform an addition
operation inside the function call.

help("+")

But let’s try a function to create a sequence of numbers - for example, let’s use the seq()
function to create a sequence of numbers from 1 to 10.

seq(10)

[1] 1 2 3 4 5 6 7 8 9 10

And let’s look at the help page for the seq() function.

emorytidal.netlify.app 23

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

R allows for what is called “lazy” coding. This basically means you can provide very minimal
input and R will try to figure out what you want using the default settings for a given function.
In the case of seq() the function begins by default at 1 and creates the output in steps of 1
up to the value of 10.

While “lazy” coding practices are common with R, it would actually be better to explicitly
define each argument to make sure you get the exact output you want. To do this, inside
the parentheses () we should assign a value to each argument.

Notice in the “Help” page for seq() shown above that the first 3 arguments are: from, to
and by. Each of these can be defined inside the () by using the syntax of the name of the

emorytidal.netlify.app 24

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

argument, an equals sign =, and then the value (or object) you want to assign:

𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = 𝑣𝑎𝑙𝑢𝑒

For example, the explicit function call should be:

seq(from = 1,
to = 10,
by = 1)

[1] 1 2 3 4 5 6 7 8 9 10

You could easily change these values to get a sequence from 0 to 5 in increments of 0.1 as
follows:

seq(from = 0,
to = 5,
by = 0.1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
1.8
[20] 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
3.7
[39] 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

Notice the incremental counter [#] on the left to help you keep track of how many elements are
in the resulting numeric vector that was the “result” or “output” from the seq() function.

emorytidal.netlify.app 25

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

3. Create your first R script

Save your code in a new script

So, as you can tell, the R Console is useful but slow and tedious. Let’s create an R script to
save all of these commands in a file so that we can easily access everything we’ve done so far
and re-run these commands as needed.

Good Reproducible Research Coding Practice

It is a good coding practice to create R code (saved in *.R script files or *.Rmd Rmarkdown
files) for every step in your data preparation and analysis so that:

• you have a record of everything you’ve done and why
• other people on your team (including yourself in a few weeks) will know what you

did and why
• you can share your code with others so they will understand what you did and why

(and to publish your code and data with your research articles - YES you can get a
DOI citation to add to your CV for data and code as well as for the article)!

In RStudio go to the top menu “File/New File/R Script”:

Once the R Script file is created, type in some of the commands we did above in the Console
and put one command on each line.

Just select each line and click “Run”.

emorytidal.netlify.app 26

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Then you can save the file on your computer as “myscript.R”, for example.

You can also select all of the rows and click run to execute all of the code in sequence and see
the output in the “Console” Window.

Here is the code and output:

emorytidal.netlify.app 27

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

4 + 4

[1] 8

sqrt(25)

[1] 5

pi

[1] 3.141593

seq(from=1, to=10, by=0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
8.0
[16] 8.5 9.0 9.5 10.0

emorytidal.netlify.app 28

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Create R objects and Use Them

Let’s try out some more built-in R functions, save the output in objects in your “Global
Environment” and then use them in other functions and subsequent analysis steps.

Create a sequence of numbers and save them as an object called x. I also added a comment
in the R code block below. Everything after the # hashtag is a comment which R will ignore.
It is a good idea to add comments in your code to make sure that you and others understand
what each part of your code does (including yourself in a few weeks when you’ve forgotten why
you wrote that code step).

save sequence of numbers
from 1 to 10 in steps of 0.5
in an object named x
x <- seq(from=1, to=10, by=0.5)

Type x to view the contents
x

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
8.0
[16] 8.5 9.0 9.5 10.0

Also take a look at the “Global Environment” to see the new object x.

emorytidal.netlify.app 29

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

use x to create new object y
y <- x*x

emorytidal.netlify.app 30

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Once the object y is created, we can make a simple 2-dimensional scatterplot using the built-in
plot() base R function.

plot x and y
plot(x,y)

2 4 6 8 10

0
20

40
60

80
10

0

x

y

The plot is shown above, but if you are running this code interactively in the RStudio desktop,
check the “Plots” window pane (lower right).

emorytidal.netlify.app 31

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

On your own

Download Rscript_01.R (right click the linked file and “Save As” the file on your computer),
then open it in your RStudio and run through the code. Try out new variations on your own.

emorytidal.netlify.app 32

https://www.project-tidal.org/
./Rscript_01.R
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

4. Install and load R packages (understanding your R session)

Status of your current computing R session with sessionInfo()

While the base installation of R is pretty powerful on it’s own, the beauty of R and the R
programming community is that there are literally hundreds of thousands if not millions of
people programming in R and creating new functions everyday.

In order to use these new functions, the developers put them together in packages that we can
install to extend the functionality of R.

But first, let’s take a look at the packages that are part of the basic installation of R. One
way to see which packages are currently installed and loaded into your current R computing
session, is by running the command sessionInfo().

Watch spelling - R is case sensitive!

Notice: This function name is all lowercase except for the capital “I” in the middle. Be
sure you are typing sessionInfo() and not sessioninfo().

You will also notice that the sessionInfo() command also lists the version of R I’m currently
running (4.4.2), my operating system (Windows 11) and and my locale (USA, East Coast).
These details can sometimes be helpful for collaborating with others who may be working with
different system settings and for debugging errors.

sessionInfo()

emorytidal.netlify.app 33

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

7 Base R Packages

The basic installation of R includes 7 packages:

• stats
• graphics
• grDevices
• utils
• datasets
• methods
• base

To learn more click on the “Packages” TAB in the lower right window pane to see the list of
packages installed on your computer. I have a lot of packages on my computer, but here is a
screenshot of the base R packages.

See the packages listed under “System Library” which are the ones that were installed with
base R. You’ll notice that only some of these have checkmarks next to them. The checkmark
means those are also loaded into your R session. Only some of them are loaded into memory
by default to minimize the use of your computer’s memory.

emorytidal.netlify.app 34

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 35

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Install a Package and Load it into R session memory

Let’s install a “new” R package, like ggplot2.

Go to the RStudio menu “Tools/Install” Packages

emorytidal.netlify.app 36

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

This will then open up a window where you can type in the name of the package you want.
As soon as we start typing ggplot2 the menu begins listing all packages with that partial
spelling…

emorytidal.netlify.app 37

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

You’ll notice that there are 3 parts to the installation:

1. Where you want to get the package from (i.e., which repository - more on repositories
below).

2. The name of the package. You can actually type more than one package name at a time
separated by commas if you want to install several packages at once.

3. The file location on your computer where the new package is installed - your file location
may be different than mine. But this is useful to know in case something goes wrong. I
would suggest keeping the default settings.

emorytidal.netlify.app 38

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Where to get packages - CRAN Repository

Using the “Tools/Install” Packages menu from within RStudio automatically links to CRAN,
which is the “The Comprehensive R Archive Network”. You’ve already been here once to
download and install the R programming language application.

Here is a screenshot of the CRAN homepage.

emorytidal.netlify.app 39

https://www.project-tidal.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Next click on “Packages” at the left to see the full list of packages currently available. As
of right now (01/10/2025 at 5:12pm EST) there are 21,872 packages. This number increases
every day as people create, validate and publish their packages on CRAN. You can get a list
of all of the packages or if you have no idea what package you need, you can also look at the
“Task Views” to see groupings of packages.

emorytidal.netlify.app 40

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Here is what the list of Packages looks like sorted by name:

emorytidal.netlify.app 41

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

However, you can also browse Packages by “Task View”:

emorytidal.netlify.app 42

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

For example, suppose you are interested in survival analysis, here is a screenshot of the Survival
Task View.

As you can see each Task View has a person(s) listed who help to maintain these collections.
As you scroll through the webpage, you’ll see links to packages they recommend along with a
description of what the packages do. For example, see the links below to the survival and
rms packages.

emorytidal.netlify.app 43

https://www.project-tidal.org/
https://cran.r-project.org/web/views/Survival.html
https://cran.r-project.org/web/views/Survival.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Where to get packages - Bioconductor Repository

While the list of R packages on CRAN is impressive, if you plan to do analyses of biological
data, there is a good chance you will need a package from Bioconductor.org.

As of right now (01/10/2025 at 6:45pm EST) there are 2289 packages on Bioconductor. Sim-
ilar to CRAN, Bioconductor requires each package to meet certain validation criteria and
code testing requirements but these criteria are even more stringent on Bioconductor than on
CRAN. You’ll notice that you can search for packages under the biocViews (left side column)
or you can sort them alphabetically or search for individual packages in the section on the
right side.

The one disadvantage of R packages from Bioconductor is that you cannot install them directly
using the RStudio menu for “Tools/Install” Packages because you cannot “see” the Bioconduc-
tor repository from inside RStudio. Instead you have to install Bioconductor packages using
R code.

emorytidal.netlify.app 44

https://www.project-tidal.org/
https://www.bioconductor.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

For example, here is what you need to do to install the phyloseq package which “… provides
a set of classes and tools to facilitate the import, storage, analysis, and graphical display of
microbiome census data”.

To install phyloseq you need to (see the black box of code in the screenshot shown below):

1. Install BiocManager from CRAN - this package you can install from the RStu-
dio menu for “Tools/Install Packages” - or you can run the code shown below for
install.packages().

install.packages("BiocManager")

2. Then go to the Console or open an R script and run:

BiocManager::install("phyloseq")

emorytidal.netlify.app 45

https://www.project-tidal.org/
https://www.bioconductor.org/packages/release/bioc/html/phyloseq.html
https://cran.r-project.org/web/packages/BiocManager/index.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Where to get packages - Github, friends, teammates, …

In addition to the CRAN and Bioconductor repositories, you can also get packages from Github
(and other cloud-based repositories), friends, teammates or write your own.

To get an idea of how many packages may be currently on Github, we can “search” for “R
package” at https://github.com/search?q=R+package&type=repositories and as you can see
this is well over 118,000+ packages.

emorytidal.netlify.app 46

https://www.project-tidal.org/
https://github.com/
https://github.com/search?q=R+package&type=repositories
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

While you can find packages on Github that have not (yet) been published on CRAN or
Bioconductor, the developers of packages currently on CRAN and Bioconductor also often
publish their development version (think of these as in “beta” and still undergoing testing) on
Github.

For example, the current published version of the data wrangling R package dplyr on CRAN
was last updated on 11/17/2023 (over a year ago).

emorytidal.netlify.app 47

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/dplyr/index.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

However, the development version of dplyr on Github was last updated 5 months ago in
August 2024. So, there is probably a new version of dplyr coming soon for CRAN.

While the developers haven’t published this “Github” version of dplyr yet on CRAN, if you
want to test out new dplyr functions and updates under development, you can go to the R
Console or write an R script to install the development version using these commands (see
below) which is explained on the dplyr on Github website.

install.packages("pak")
pak::pak("tidyverse/dplyr")

emorytidal.netlify.app 48

https://www.project-tidal.org/
https://github.com/tidyverse/dplyr
https://github.com/tidyverse/dplyr
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Finding and vetting R packages

So, as you have seen there are numerous ways to find R packages and there are hundreds
of thousands of them out there. Your company or team may also have their own custom R
package tailored for your specific research areas and data analysis workflows.

Finding R packages is similar to finding new questionnaires, surveys or instruments for your
research. For example, if you want to measure someone’s depression levels, you should use
a validated instrument like the Center for Epidemiological Studies-Depression (CESD) or the
Beck Depression Index (BDI). These measurement instruments have both been well published
and are well established for depression research.

Finding R packages is similar - do your research! Make sure that the R package has been
published and is well established to do the analysis you want. In terms of reliability, getting
packages from CRAN or Bioconductor are the best followed by Github or other individuals.
The best suggestion is look to see which R packages are being used by other people in your
field.

No oversight company or agency

While it may seem worrisome that there is no governing company or organization that
verifies and validates and certifies all R packages, the good news is that the R commu-
nity is a vast Global community. The development of R is not controlled by a limited
number of people hired within a single company - instead there are literally millions of R
programmers across the Globe testing and providing feedback on a 24/7 basis. If there
is a problem with a package or function, there will be people posting about these issues
- see Additional Resources.

This is the power of Open Source computing!!

emorytidal.netlify.app 49

https://www.project-tidal.org/
https://www.apa.org/pi/about/publications/caregivers/practice-settings/assessment/tools/depression-scale
https://www.apa.org/pi/about/publications/caregivers/practice-settings/assessment/tools/beck-depression
additionalResources.html#other-places-to-get-help
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Popularity of R Packages

To get an idea of how long a package has been in use and if it is still being actively supported
and how it relates to other similar packages, check out this interactive Shiny app website for
package downloads from CRAN https://hadley.shinyapps.io/cran-downloads/. Type in the
packages you want (separated by commas) to compare and put in the date range of interest.

Here is an example comparing the arsenal, gtsummary, and tableone packages all of which
are useful for making tables of summary statistics (aka, “Table 1”) - showing the number of
downloads since the beginning of Jan 1, 2024.

As you can see the most downloaded of these 3 packages is gtsummary followed by tableone
and then arsenal having the fewest downloads. This does NOT necessarily imply quality,
but it does give you some insight into the popularity of these packages. I actually prefer the
arsenal table package but tableone has been around longer and gtsummary is written by
members of the RStudio/Posit development community and is more well known and popular.
All 3 of these packages can be found in use in current research literature.

You will see examples of all 3 of these table-making packages in Module lesson 1.3.2

emorytidal.netlify.app 50

https://www.project-tidal.org/
https://hadley.shinyapps.io/cran-downloads/
module132_DataWrangling.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Here is an example of two specific packages I like. The rggobi package which was great for
visualizing multiple dimensions of data simultaneously but which is no longer supported. But
there is now a newer tourr package which was written by the same developers to replace
the rggobi package. You can see that in the middle of 2020, the number of downloads for
rggobi dropped almost to 0 and the tourr package downloads started to rise - this is about
when rggobi was archived on CRAN and they switched over to maintaining the newer tourr
package.

• rggobi on CRAN moved to archived status in July 2020, but
• tourr on CRAN was last updated in April 2024.

In summary:

• do your homework,
• check to see when the package was last updated,
• research who maintains it and
• review how good their documentation is for the package and what it does, and
• see if the package has been used by others in your research area.

emorytidal.netlify.app 51

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/rggobi/index.html
https://cran.r-project.org/web/packages/tourr/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Load the new R package into your R session

After you’ve decided what package you want and have installed it onto your computer, you
must load it into memory for EVERY new R session for which you want those functions
available.

Packages - install once, (re)-load every R session

Unless you upgrade R or change computers, you only need to install a given R package
once. But you do need to (re)-load the package into your current R session every time
you (re)-start R (or RStudio).

For example, suppose I want to make a plot using the ggplot2 package. Before I can use the
ggplot() function, I have to load that package into my computing session.

Here is my current R session status BEFORE I load the ggplot2 package.

show current sessionInfo
sessionInfo()

R version 4.5.1 (2025-06-13 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22000)

Matrix products: default
LAPACK version 3.12.1

locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] compiler_4.5.1 fastmap_1.1.1 cli_3.6.3 tools_4.5.1
[5] htmltools_0.5.8.1 rstudioapi_0.15.0 yaml_2.3.8 rmarkdown_2.26

emorytidal.netlify.app 52

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

[9] knitr_1.50 jsonlite_1.8.8 xfun_0.52 digest_0.6.35
[13] rlang_1.1.4 evaluate_0.23

Since I have not yet loaded the ggplot2 package into the session, I will get an error.

I have not yet loaded ggplot2 into the session
try the ggplot() function with the
built-in pressure dataset to see error
ggplot(pressure, aes(temperature, pressure)) +
geom_point()

Error in ggplot(pressure, aes(temperature, pressure)): could not find
function "ggplot"

The code above generates an error since these functions are not yet available in our session.

emorytidal.netlify.app 53

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

To fix this error, we need to use the library() function to load the ggplot2 functions into
current working memory.

load ggplot2 package
library(ggplot2)

look at sessionInfo again
sessionInfo()

R version 4.5.1 (2025-06-13 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22000)

Matrix products: default
LAPACK version 3.12.1

locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] ggplot2_3.5.1

loaded via a namespace (and not attached):
[1] vctrs_0.6.5 cli_3.6.3 knitr_1.50 rlang_1.1.4
[5] xfun_0.52 generics_0.1.3 jsonlite_1.8.8 glue_1.8.0
[9] colorspace_2.1-0 htmltools_0.5.8.1 scales_1.3.0 fansi_1.0.6
[13] rmarkdown_2.26 grid_4.5.1 evaluate_0.23 munsell_0.5.0
[17] tibble_3.2.1 fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
[21] compiler_4.5.1 dplyr_1.1.4 pkgconfig_2.0.3 rstudioapi_0.15.0
[25] digest_0.6.35 R6_2.5.1 tidyselect_1.2.1 utf8_1.2.4
[29] pillar_1.9.0 magrittr_2.0.3 withr_3.0.2 tools_4.5.1
[33] gtable_0.3.6

Notice that under other attached packages we can now see ggplot2_3.5.1 indicating that

emorytidal.netlify.app 54

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

yes ggplot2 is installed and in memory and that version 3.5.1 is the version I am currently
using.

emorytidal.netlify.app 55

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Let’s try the plot again with the ggplot() function from the ggplot2 package.

try the plot again
ggplot(pressure, aes(temperature, pressure)) +
geom_point()

0

200

400

600

800

0 100 200 300
temperature

pr
es

su
re

emorytidal.netlify.app 56

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Reload packages for every new R session

Everything you close out your R/RStudio computing session (or restart your R session)
you will need to load all of your package again. I know this seems like a HUGE pain,
but there is a rationale for this.

1. You may not need the same packages for every new computing session - so R begins
with the minimum loaded to save computing memory.

2. The GOOD NEWS is you do not have to re-install the packages - these are already
saved on your computer. You only have to re-load them into memory using the
library() function.

3. This workflow forces you to document (in your code) which packages you need for
your computing sessions and why you are using them.

BUT … If you do have a core set of packages that you would like to make sure get loaded
into memory every time you start R/RStudio, see these helpful posts on customizing
your startup:

• https://www.datacamp.com/doc/r/customizing
• https://www.r-bloggers.com/2014/09/fun-with-rprofile-and-customizing-r-

startup/

emorytidal.netlify.app 57

https://www.project-tidal.org/
https://www.datacamp.com/doc/r/customizing
https://www.r-bloggers.com/2014/09/fun-with-rprofile-and-customizing-r-startup/
https://www.r-bloggers.com/2014/09/fun-with-rprofile-and-customizing-r-startup/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

5. Create your first R Markdown report and produce output files in different
formats (HTML, PDF, or DOCX)

Create a new Rmarkdown File

We will do more in the later lesson 1.3.6: Putting reproducible research principles into practice,
but let’s take a look at an Rmarkdown file and how we can use it to create a report that
combines together data + code + documentation to produce a seamless report.

Go to the RStudio menu and click “File/New File/R Markdown”:

emorytidal.netlify.app 58

https://www.project-tidal.org/
module136_ReproducibleResearch.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 59

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Type in a title, your name, the date and choose the format you’d like to create. For your first
document I encourage you to try HTML. But you can create WORD (DOC) documents and
even PDFs. In addition to documents, you can also create slide deck presentations, Shiny apps
and other custom products like R packages, websites, books, dashboards and many more.

Rmarkdown ideas and inspiration

• Rmarkdown Gallery
• Rmarkdown Formats
• Rmarkdown Cookbook

To get started, use the built-in template:

• Type in a title
• Type in your name as author
• Choose and output document format

– HTML is always a good place to start - only need a browser to read the output
*.html file.

– DOC usually works OK - but you need MS Word or Open Office installed
on your computer.

– PDF NOTE: You need a TEX compiler on your computer - Learn about
installing the tinytex https://yihui.org/tinytex/ R package to create PDFs.

emorytidal.netlify.app 60

https://www.project-tidal.org/
https://rmarkdown.rstudio.com/gallery.html
https://rmarkdown.rstudio.com/formats.html
https://bookdown.org/yihui/rmarkdown-cookbook/
https://yihui.org/tinytex/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 61

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Rmarkdown sections

Here is the Example RMarkdown Template provided by RStudio to help you get started
with your first Rmarkdown document.

emorytidal.netlify.app 62

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

This document consists of the following 3 key sections:

1. YAML (yet another markup language) - this is essentially the metadata for your docu-
ment and defines elements like the title, author, date and type of output document to
be created (HTML in this example).

emorytidal.netlify.app 63

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

2. R code blocks - the goal is to “interweave” code and documentation so these 2 elements
live together. That way the analysis output and any associated tables or figures are
updated automatically without having to cut-and-paste from other applications into
your document - which is time consuming and prone to human errors.

Notice that the code block starts and ends with 3 backticks ``` and includes the {r} Rlanguage
designation inside the curly braces.

Rmarkdown

Rmarkdown can be used for many different programming languages including python,
sas, and more, see rmarkdown - language-engines.

emorytidal.netlify.app 64

https://www.project-tidal.org/
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/language-engines.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

3. Along with the R code blocks, we can also create our document with “marked up (or
marked down)” text. Rmarkdown is a version of “markdown” which is a simplified set
of tags that tell the computer how you want a piece of text formatted.

For example putting 2 asterisks ** before and after a word will make it bold, putting one _
underscore before and after a word will make the word italics; one or more hashtags # indicate
a header at certain levels, e.g. 2 hashtags ## indicate a header level 2.

Rmarkdown Tutorial

I encourage you to go through the step by step tutorial at https://rmarkdown.rstudio.
com/lesson-1.html.

emorytidal.netlify.app 65

https://www.project-tidal.org/
https://rmarkdown.rstudio.com/
https://www.markdownguide.org/
https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/lesson-1.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Here are all 3 sections outlined.

emorytidal.netlify.app 66

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

At the top of the page you’ll notice a little blue button that says “knit” - this will “knit” (or
combine) the output from the R code chunks and format the text as “marked up” and produce
this HTML file (which will open in a browser window):

emorytidal.netlify.app 67

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

R Code For This Module

• module_131.R
• Rscript_01.R

References

R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. https://ggplot2.tidyverse.org.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi,
Claus Wilke, Kara Woo, Hiroaki Yutani, Dewey Dunnington, and Teun van den Brand.
2024. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https:
//ggplot2.tidyverse.org.

Other Helpful Resources

Other Helpful Resources

emorytidal.netlify.app 68

https://www.project-tidal.org/
module_131.R
Rscript_01.R
https://www.R-project.org/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
./additionalResources.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

	Session Objectives
	0. Prework - Before You Begin
	Software and Applications to Download

	1. Get aquainted with R and R Studio
	Basic R
	RStudio IDE
	Customizing your RStudio interface

	2. Write simple R code in Console
	Simple math
	Built in constants
	Getting help
	Try out a built-in R function

	3. Create your first R script
	Save your code in a new script
	Create R objects and Use Them
	On your own

	4. Install and load R packages (understanding your R session)
	Status of your current computing R session with sessionInfo()
	7 Base R Packages
	Install a Package and Load it into R session memory
	Where to get packages - CRAN Repository
	Where to get packages - Bioconductor Repository
	Where to get packages - Github, friends, teammates, …
	Finding and vetting R packages
	Load the new R package into your R session

	5. Create your first R Markdown report and produce output files in different formats (HTML, PDF, or DOCX)
	Create a new Rmarkdown File
	Rmarkdown sections

	R Code For This Module
	References
	Other Helpful Resources

