
Project TIDAL Module 1.3: Data Analytics Using R

1.3.2: Data Wrangling
(Asynchronous-Online)

Session Objectives

1. To read in data.
2. To view the Data.
3. To subset the data - select and filter.
4. To create and modify variables.
5. To get data summary and descriptive statistics
6. Exporting/Saving Data

0. Prework - Before You Begin

Install Packages

Before you begin, please go ahead and install the following packages - these are all on CRAN,
so you can install them using the RStudio Menu “Tools/Install” Packages interface:

• readr on CRAN and readr package website
• readxl on CRAN and readxl package website
• haven on CRAN and haven package website
• dplyr on CRAN and dplyr package website
• Hmisc on CRAN and Hmiscpackage website
• psych on CRAN and psych package website
• arsenal on CRAN and arsenal package website
• gtsummary on CRAN and gtsummary package website
• tableone on CRAN
• gmodels on CRAN
• pkgsearch on CRAN
• palmerpenguins on CRAN

emorytidal.netlify.app 1

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/readr/
https://readr.tidyverse.org/
https://cran.r-project.org/web/packages/readxl/
https://readxl.tidyverse.org/
https://cran.r-project.org/web/packages/haven/
https://haven.tidyverse.org/
https://cran.r-project.org/web/packages/dplyr/
https://dplyr.tidyverse.org/
https://cran.r-project.org/web/packages/Hmisc/
https://hbiostat.org/r/hmisc/
https://cran.r-project.org/web/packages/psych/
https://personality-project.org/r/psych/
https://cran.r-project.org/web/packages/arsenal/
https://mayoverse.github.io/arsenal/
https://cran.r-project.org/web/packages/gtsummary/
https://www.danieldsjoberg.com/gtsummary/
https://cran.r-project.org/web/packages/tableone/
https://cran.r-project.org/web/packages/gmodels/
https://cran.r-project.org/web/packages/pkgsearch/
https://cran.r-project.org/web/packages/palmerpenguins/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

See Module 1.3.1 on Installing Packages

emorytidal.netlify.app 2

https://www.project-tidal.org/
module131_IntroRRStudio.html#install-and-load-r-packages-understanding-your-r-session
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

1. To read in data.

Begin with a NEW RStudio Project

Let’s begin with a new RStudio Project.

1. First click on the menu at top for “File/New Project”:

emorytidal.netlify.app 3

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 4

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

2. Next choose either an “Existing Directory” or “New Directory” depending on whether
you want to use a folder that already exists on your computer or you want to create a
new folder.

3. For now, let’s choose a “New Directory” and then select “New Project”

emorytidal.netlify.app 5

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 6

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

4. When the next window opens, as an example, I’m creating a new project folder called
myfirstRproject for my RStudio project under my parent directory, C:\MyGithub.
Your folder names and directories will most likely be different than mine.

5. So, if I look back on my computer in my file manager (I’m on a computer with
Windows 11 operating system) - I can now see this new folder on my computer for
C:\MyGithub\myfirstRproject.

emorytidal.netlify.app 7

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

6. Now let’s put some data into this folder. Feel free to move datasets of your own into
this new RStudio project directory. But here are some test datasets you can download
and place into this new directory on your computer - choose at least one to try out -
right click on each link and use “Save As” to save the file on your computer in your new
project folder.

• mydata.csv - CSV (comma separated value) formatted data
• mydata.xlsx - EXCEL file
• mydata.sav - SPSS Dataset
• mydata.sas7bdat - SAS Dataset
• Mydata_Codebook.pdf - Codebook for “mydata” dataset

7. After putting these files into your new RStudio project folder, you should see something
like this now in your RStudio Files Listing (bottom right window pane):

emorytidal.netlify.app 8

https://www.project-tidal.org/
mydata.csv
mydata.xlsx
mydata.sav
mydata.sas7bdat
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Importing Data

Now that you’ve got some data in your RStudio project folder, let’s look at options for im-
porting these datasets into your RStudio computing session.

Click on “File/Import Dataset” - and then choose the file format you want.

Import a CSV file

What is a CSV file?

CSV stands for “comma separated value” format. This format is what you would think
- each value for a different column (or variable) is separated by a column and each new
row represents a new record in the dataset.

CSV is widely accepted as a “universal” standard as a data format for easy exchange
between different software and databases.

• Wikipedia Page on CSV
• Library of Congress Page on CSV
• There is even a conference on CSV

Here is an example of importing the mydata.csv - CSV formatted data. Let’s use the From
Text (readr) option.

emorytidal.netlify.app 9

https://www.project-tidal.org/
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
https://csvconf.com/
mydata.csv
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 10

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Why should we use the “from text” option? Why do I not see a CSV option?

Technically the CSV format is TEXT. You can open a CSV file in a text editor and easily
read it - even if you do not have proprietary software like Excel, Access, SPSS, SAS, etc. Here
is a screen shot of what the “mydata.csv” file looks like in my text editor “Notepad” on my
Windows 11 computer:

Notice that:

• The first row has text labels for the “variables” (columns) in the dataset - there are 14
column labels with each value separated by a , comma.

• The remaining rows are the “data” for the dataset.
• After the 1st row of labels, there are 21 rows of data.
• Take a minute and notice there are some odd values, and odd patterns of missing data

(two commas ,, together indicate that value is missing for that column (variable)). We’ll
explore these issues further in later lesson modules.

emorytidal.netlify.app 11

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Once the “File/Import Data/From Text (readr)” opens, click on “Browse” and choose the
mydata.csv file. Assuming all goes well, this window will read the top of the datafile and
show you a quick “Data Preview” to check that the import will work.

And on the bottom right, the “Code Preview” shows you the R code commands needed to
import this dataset. You can then click on the little “clipboard” on the bottom right to copy
this R code to your “clipboard”, (the R code option will be explained below).

OR You can also just click “Import” and the R code will be executed for you and the dataset
brought into your R computing session (but this is NOT a good practice for reproducible
research!).

The better way is to save the R code commands to import the data so you will be able to
reproduce all steps in your data analysis workflow using code as opposed to non-reproducible
point-and-click steps.

Once you copied the R code above to your clipboard, go to “File/New File/R Script” to open
a script programming window:

emorytidal.netlify.app 12

https://www.project-tidal.org/
mydata.csv
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

And then “paste” your R code into this window.

As you can see importing the mydata.csv dataset, involves 2 steps:

1. Loading the readr package into your RStudio computing session, by running

emorytidal.netlify.app 13

https://www.project-tidal.org/
mydata.csv
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

library(readr)
2. Running the read_csv() function from the readr package and then assigning <- this

output into a new R data object called mydata.

To import the dataset, select these 2 lines of code and then click “Run” to run the R code.
And be sure to click “Save” to save your first R program - for example “importdata.R”.

emorytidal.netlify.app 14

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

After running these 2 lines of code, you should see something like this - the code messages in
the bottom left “Console” window pane and a new R data object “mydata” in the top right
“Global Environment” window pane.

emorytidal.netlify.app 15

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Import an EXCEL file

Let’s try another format. While you will probably encounter CSV (comma separated value)
data files often (since nearly all data collection platforms, databases and software will be able
to export this simple non-proprietary format), many people natively open/read CSV files in the
EXCEL software. So you will probably also encounter EXCEL (*.XLS or *.XLSX) formatted
data files.

In addition to an EXCEL file using a Microsoft proprietary format, EXCEL files can have
formatting (font sizes, colors, borders) and can have multiple TABs (or SHEETs). Here are
some screen shots of the mydata.xlsx - EXCEL file file.

The first “Data” TAB:

emorytidal.netlify.app 16

https://www.project-tidal.org/
mydata.xlsx
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

The second “Codebook” TAB:

emorytidal.netlify.app 17

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

To import an EXCEL file into R, we will use the same process as above, but this time we will
select “File/Import Dataset/From Excel”:

This process uses the read_excel() function from the readxl package.

With the read_excel() function, we can specify several options including:

• Which TAB do you want to import (for now we are only importing one data TAB at a
time). We are selecting the “Data” TAB.

• I’m leaving all of the rest as their defaults which include:

emorytidal.netlify.app 18

https://www.project-tidal.org/
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

– not changing the “Range”,
– leaving “Max Rows” blank,
– and leaving rows to “Skip” as 0, which can be useful if you receive files with a lot

of “header” information at the top„
– leaving the “NA” box blank - but you could put in a value like “99” if you want all

99’s treated as missing - but this is applied to the ENTIRE dataset. We will look
at these issues for individual variables below.

• Also notice that the checkboxes are selected for “First Row as Names” (which is the
usual convention) and “Open Data Viewer”, which creates the View(mydata) in the
“Code Preview” window to the right. You can skip this if you like.

So in the “Code Preview” window to the right, we have specified the name of the data file
"mydata.xlsx" and the “Data” TAB using the option sheet = "Data". Remember to copy
this code to the clipboard and save it in a *.R program script.

emorytidal.netlify.app 19

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Here is the importdata.R program script we have so far for reading in the "mydata.csv" and
"mydata.xlsx" data files. At the moment, the second time we “create” the mydata R data
object we are overwriting the previous one in the sequential code steps below.

Also notice I have added some comments which start with a # hashtag. Any text following a
will be ignored by R and not executed.

emorytidal.netlify.app 20

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Import SPSS data

For data files from other “common” statistics software like SPSS, SAS and Stata, we can
use the “File/Import Dataset/From SPSS (or From SAS or From Stata)”. All of these use
read_xxx() functions from the haven package.

Here is the code generated to import a SPSS datafile:

emorytidal.netlify.app 21

https://www.project-tidal.org/
https://haven.tidyverse.org/reference/index.html#reading-and-writing
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Import SAS data

Importing a *.sas7bdat SAS datafile, is similar to SPSS - here is that code.

Notice that in addition to the datafile "mydata.sas7bdat", the read_sas() function also
shows NULL. When reading in a SAS file, you can also add arguments for the catalog file
and encoding specifics. You can read more on the Help pages for the haven::read_sas()
function.

emorytidal.netlify.app 22

https://www.project-tidal.org/
https://haven.tidyverse.org/reference/read_sas.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

emorytidal.netlify.app 23

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Here is a quick summary of all of the data import codes shown above importdata.R:

Using = equals for parameter options inside a function

Notice that we used sheet = "Data" inside the readxl::read_excel() function. The
single = equals sign is used to assign a value to a parameter or option inside a function.

Import the CSV file
library(readr)
mydata <- read_csv("mydata.csv")

Import the EXCEL file
Choose the "Data" TAB
library(readxl)
mydata <- read_excel("mydata.xlsx", sheet = "Data")

Import a SPSS file
library(haven)
mydata <- read_sav("mydata.sav")

Import a SAS file
library(haven)
mydata <- read_sas("mydata.sas7bdat", NULL)

haven and foreign packages

In addition to the haven package which is part of tidyverse and has been around since
2015, there is also another useful package for importing and exporting other statistical
software formats that has been around since 1999 and it still being maintained - the
foreign package.

In addition to SPSS and Stata, the foreign package also can read in other formats
like DBF, EPI INFO, Minitab, Octave, SSD (SAS Permanent Datasets via XPORT)
SYSTAT, and ARFF.

Compare current downloads of these 2 packages at https://hadley.shinyapps.io/cran-
downloads/.

We can also review the history of these 2 packages using the pkgsearch package and the
cran_package_history() function.

emorytidal.netlify.app 24

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/foreign/index.html
https://hadley.shinyapps.io/cran-downloads/
https://hadley.shinyapps.io/cran-downloads/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

optionally install pkgsearch
install.packages("pkgsearch")
library(pkgsearch)

get history of haven package
havenhistory <- cran_package_history("haven")

get history of foreign package
foreignhistory <- cran_package_history("foreign")

display the earliest date on CRAN
for these 2 packages
havenhistory$date[1]

[1] "2015-03-01T08:18:16+00:00"

foreignhistory$date[1]

[1] "1999-12-17T02:05:13+00:00"

emorytidal.netlify.app 25

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Exploring Built-in Datasets

If you are looking for other datasets to test out functions or just need some data to play around
with, the base R packages and other R packages (like palmerpenguins) have data built-in to
them. You can use these datasets.

We can take a look at what datasets are available using the data() function:

take a look at the datasets available in the
"datasets" base R package
data()

This will open a viewer window (top left) - also notice that if you search for “Help” on the
pressure dataset, you get a description of the dataset and the original source and citation.
Notice in the “Help” window, the word pressure is followed by curly brackets indicating that
the pressure dataset is in the built-in R package {datasets}.

emorytidal.netlify.app 26

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/palmerpenguins/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

We can see the pressure dataset is indeed in the datasets package if we keep scrolling down
in the viewer window - also notice the mtcars dataset which you will often find in R tutorials
and coding examples.

emorytidal.netlify.app 27

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Once you know where to look, you can then explore lots of these datasets. For example,
we can take a look at the built-in pressure dataset, which includes 19 values showing the
relationship between temperature in degrees Celsius and pressure in mm (or mercury). To
“see” this built-in data object, just type the name pressure to see (or print out) the object.

pressure

temperature pressure
1 0 0.0002
2 20 0.0012
3 40 0.0060
4 60 0.0300
5 80 0.0900
6 100 0.2700
7 120 0.7500
8 140 1.8500
9 160 4.2000
10 180 8.8000
11 200 17.3000
12 220 32.1000
13 240 57.0000
14 260 96.0000
15 280 157.0000
16 300 247.0000
17 320 376.0000
18 340 558.0000
19 360 806.0000

Normally most datasets are much larger than this little dataset. So, I would not advise trying
to view most datasets by printing them to the “Console” window pane. Instead you can either
click on the object in your “Global Environment” to view it - or you can run the View()
function to open the viewer window.

You can “load” the built-in pressure dataset using the data(pressure) function to load the
pressure dataset to load into your “Global Environment”, which loads the dataset into your
R session.

emorytidal.netlify.app 28

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

If we click on the little “Table icon” all the way to the right of the pressure dataset in the
“Global Environment” window - or run View(pressure) - we can open the dataset in the
Viewer window:

data(pressure)
View(pressure)

Explore Datasets in R Packages

I encourage you to use the data(package = "xxx") function to see what, if any, datasets
may be built-in to the various packages you may install and load during your R computing
sessions.

emorytidal.netlify.app 29

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

If you are interested in seeing other datasets in other R packages, go ahead and install the
palmerpenguins package and take a look at the penguins dataset included:

look at datasets included with the
palmerpenguins dataset
data(package = "palmerpenguins")

You can learn more about the penguins dataset, by opening up the “Help” page for the
dataset. You can also load the palmerpenguins package and then load the penguins dataset
using this code.

help(penguins, package = "palmerpenguins")
library(palmerpenguins)
data(penguins)

emorytidal.netlify.app 30

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/palmerpenguins/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

And clicking the the little data table icon after loading the penguins dataset into the “Global
Environment”, you can see the dataset in the viewer window.

emorytidal.netlify.app 31

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

2. To view The Data.

Look at small data in Console

Let’s work with the mydata dataset that we imported above using the readr::read_csv()
function.

import the mydata.csv dataset
mydata <- readr::read_csv("mydata.csv")

This is not a very large dataset - mydata has 21 rows (or observations) and 14 variables (or
columns). So, we can view the whole thing by printing it to the “Console” window.

You’ll notice that depending on the size of your current “Console” window, font size, zoom
settings and more, what you see may vary. Since we read this dataset in using the readr
package, the data object is now a “tibble” dataframe which only shows the columns and rows
that will reasonably show up in your “Console” window.

What is a “tibble” tbl_df?

As stated on the homepage for the tibble package at https://tibble.tidyverse.org/, a
“tibble” is

“… a modern reimagining of the data.frame, keeping what time has proven to
be effective, and throwing out what is not.”

Also a “tibble” has

“… an enhanced print() method which makes them easier to use with large
datasets containing complex objects.”

And the output below also lists what kind of column each variable is. For example,

• Age is a <dbl> indicating it is a numeric variable saved using double-precision, whereas
• GenderSTR is <chr> indicating this is a text or character (or “string”) type variable.

print the dataset into the Console
mydata

A tibble: 21 x 14
SubjectID Age WeightPRE WeightPOST Height SES GenderSTR GenderCoded
q1

emorytidal.netlify.app 32

https://www.project-tidal.org/
https://tibble.tidyverse.org/
https://tibble.tidyverse.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
<dbl>

1 1 45 68 145 5.6 9 m 1
4
2 2 50 167 166 5.4 2 f 2
3
3 3 35 143 135 5.6 2 <NA> NA
3
4 4 44 216 201 5.6 2 m 1
4
5 5 32 243 223 6 2 m 1
5
6 6 48 165 145 5.2 2 f 2
2
7 8 50 60 132 3.3 2 m 1
3
8 9 51 110 108 5.1 3 f 2
1
9 12 46 167 158 5.5 2 F 2
1
10 14 35 190 200 5.8 1 Male 1
4
i 11 more rows
i 5 more variables: q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>

emorytidal.netlify.app 33

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Look the “structure” of the dataset

You can also view the different kinds of variables in the dataset using the str() or “structure”
function - which lists the type of variable, the number of elements in each column [1:21]
indicates each column has 21 elements (or 21 rows) and the other values are a quick “peek”
at the data inside the dataset. For example, the first 3 people in this dataset are ages 45, 50
and 35.

str(mydata)

spc_tbl_ [21 x 14] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ SubjectID : num [1:21] 1 2 3 4 5 6 8 9 12 14 ...
$ Age : num [1:21] 45 50 35 44 32 48 50 51 46 35 ...
$ WeightPRE : num [1:21] 68 167 143 216 243 165 60 110 167 190 ...
$ WeightPOST : num [1:21] 145 166 135 201 223 145 132 108 158 200 ...
$ Height : num [1:21] 5.6 5.4 5.6 5.6 6 5.2 3.3 5.1 5.5 5.8 ...
$ SES : num [1:21] 9 2 2 2 2 2 2 3 2 1 ...
$ GenderSTR : chr [1:21] "m" "f" NA "m" ...
$ GenderCoded: num [1:21] 1 2 NA 1 1 2 1 2 2 1 ...
$ q1 : num [1:21] 4 3 3 4 5 2 3 1 1 4 ...
$ q2 : num [1:21] NA 4 4 2 3 5 NA 4 1 44 ...
$ q3 : num [1:21] NA 1 2 2 5 5 4 1 5 1 ...
$ q4 : num [1:21] 4 40 3 1 2 1 3 3 5 1 ...
$ q5 : num [1:21] 4 3 5 1 4 4 9 1 1 4 ...
$ q6 : num [1:21] 5 2 2 9 1 5 2 4 2 5 ...
- attr(*, "spec")=
.. cols(
.. SubjectID = col_double(),
.. Age = col_double(),
.. WeightPRE = col_double(),
.. WeightPOST = col_double(),
.. Height = col_double(),
.. SES = col_double(),
.. GenderSTR = col_character(),
.. GenderCoded = col_double(),
.. q1 = col_double(),
.. q2 = col_double(),
.. q3 = col_double(),
.. q4 = col_double(),
.. q5 = col_double(),
.. q6 = col_double()
..)
- attr(*, "problems")=<externalptr>

emorytidal.netlify.app 34

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

You can also interactively View the data by clicking on the data icon and you can also click
the little “table” icon to the far right next to the dataset in the “Global Environment”to open
the data viewer window on the left.

You can also click on the little blue circle to the left of the mydata dataset to change the
arrow from facing right to facing down to see the “structure” of the data in the “Global
Environment”.

emorytidal.netlify.app 35

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

3. To subset the data - select and filter.

Using base R packages and functions

View parts of the dataset

Now let’s “explore” the data by viewing sections of it.

Using base R commands, we can use functions like head() and tail() with each showing
either the top or bottom 6 rows of the dataset. We can add a number to the function call to
see more or less rows if we wish.

look at top 6 rows of data
head(mydata)

A tibble: 6 x 14
SubjectID Age WeightPRE WeightPOST Height SES GenderSTR GenderCoded
q1

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
<dbl>

1 1 45 68 145 5.6 9 m 1
4
2 2 50 167 166 5.4 2 f 2
3
3 3 35 143 135 5.6 2 <NA> NA
3
4 4 44 216 201 5.6 2 m 1
4
5 5 32 243 223 6 2 m 1
5
6 6 48 165 145 5.2 2 f 2
2
i 5 more variables: q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>

look at the bottom 10 rows of data
tail(mydata, n=10)

A tibble: 10 x 14
SubjectID Age WeightPRE WeightPOST Height SES GenderSTR GenderCoded
q1

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
<dbl>

emorytidal.netlify.app 36

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

1 19 40 200 195 6.1 1 f 2
1
2 21 99 180 185 5.9 3 f 2
2
3 22 52 240 220 6.5 2 m 1
2
4 23 24 250 240 6.4 2 M 1
5
5 24 35 175 174 5.8 2 F 2
5
6 27 51 220 221 6.3 2 m 1
4
7 28 43 230 98 2.6 2 m 1
11
8 30 36 190 180 5.7 1 female 2
5
9 32 44 260 109 6.4 3 male 1
1
10 NA NA NA NA NA NA <NA> NA
NA
i 5 more variables: q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>

What are these wierd NAs?

The NA letters that show up is how R stores missing data. If the dataset you import has
a blank cell (for either numeric or character type data), then R interprets that as “not
available” which is indicated by NA. NA is a reserved word in R specifically set aside for
handling missing values.

You can learn more about NA by running:

help(NA, package = "base")

You can also view different parts of the data by using square brackets [] to select specific rows
and columns using [row, column] index indicators.

Select the values in rows 1-4
and in columns 1-3
mydata[1:4, 1:3]

A tibble: 4 x 3
SubjectID Age WeightPRE

<dbl> <dbl> <dbl>

emorytidal.netlify.app 37

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

1 1 45 68
2 2 50 167
3 3 35 143
4 4 44 216

To select all of a given row or column just leave that index blank.

show all of rows 1-2
mydata[1:2,]

A tibble: 2 x 14
SubjectID Age WeightPRE WeightPOST Height SES GenderSTR GenderCoded
q1

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
<dbl>

1 1 45 68 145 5.6 9 m 1
4
2 2 50 167 166 5.4 2 f 2
3
i 5 more variables: q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>

show all of columns 3-4
mydata[,3:4]

A tibble: 21 x 2
WeightPRE WeightPOST

<dbl> <dbl>
1 68 145
2 167 166
3 143 135
4 216 201
5 243 223
6 165 145
7 60 132
8 110 108
9 167 158
10 190 200
i 11 more rows

emorytidal.netlify.app 38

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

View variables in dataset by name

We can also select columns from a dataset using the variable (or column) name. To see the
names of all of the variables in a dataset, use the names() function.

list variable names in mydata
names(mydata)

[1] "SubjectID" "Age" "WeightPRE" "WeightPOST" "Height"
[6] "SES" "GenderSTR" "GenderCoded" "q1" "q2"
[11] "q3" "q4" "q5" "q6"

We can use the $ “dollar sign” operator to “select” named variables out of a dataset. Let’s
look at all of the ages in mydata.

look at all of the ages
of the 21 people in mydata
mydata$Age

[1] 45 50 35 44 32 48 50 51 46 35 36 40 99 52 24 35 51 43 36 44 NA

We can also use these variable names with the [] brackets in base R syntax. And we use the
c() combine function to help us put a list together. Let’s look at the 2 weight columns in the
dataset. Put the variable names inside "" double quotes.

show all rows for
the 2 weight variables in mydata
mydata[, c("WeightPRE", "WeightPOST")]

A tibble: 21 x 2
WeightPRE WeightPOST

<dbl> <dbl>
1 68 145
2 167 166
3 143 135
4 216 201
5 243 223
6 165 145
7 60 132
8 110 108
9 167 158
10 190 200
i 11 more rows

emorytidal.netlify.app 39

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Using dplyr functions

Using tidyverse packages and functions

As you can see while base R is very powerful on it’s own, the syntax is less than intuitive.
There is a whole suite of R packages that are designed to work together and use a different
syntax that improves programming workflow and readability.

Learn more about the suite of tidyverse packages. You’ve already used two of these, readr
and haven are both part of tidyverse for importing datasets.

Another one of these tidyverse packages, dplyr is a very good package for “data wran-
gling”.

Pick columns using dplyr::select()

Instead of using the base R $ selector, the dplyr package has a select() function where
you simply choose variables using their name. Let’s look at Height and q1 from the mydata
dataset.

Using package::function() syntax

It is good coding practice, especially when loading several packages at once into your
computing session, to make sure you are calling the exact function you want from a
specific package. So, I’m using the syntax of package::function() to help keep track
of which package and which function is being used below.

load dplyr package
library(dplyr)

select Height and q1 from mydata
dplyr::select(mydata, c(Height, q1))

A tibble: 21 x 2
Height q1
<dbl> <dbl>

1 5.6 4
2 5.4 3
3 5.6 3
4 5.6 4
5 6 5
6 5.2 2
7 3.3 3
8 5.1 1

emorytidal.netlify.app 40

https://www.project-tidal.org/
https://www.tidyverse.org/
https://readr.tidyverse.org/
https://haven.tidyverse.org/
https://dplyr.tidyverse.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

9 5.5 1
10 5.8 4
i 11 more rows

Workflow using the pipe %>% operator

Another improvement of the tidyverse approach of R programming is to use the pipe %>%
operator. Basically what this syntax does is take the results from “A” and pipe it into –> the
next “B” function, e.g. A %>% B so we can begin to “daisy-chain” a sequence of programming
steps together into a logical workflow that is easy to “read” and follow.

Here is a working example to show the same variable selection process we did above, but now
we will be using the dplyr::select() function. The code below takes the mydata dataset
and pipes %>% it into the select() function. We were also able to drop using the c() function
here.

start with mydata and then
select Height and q1 from mydata
mydata %>% dplyr::select(Height, q1)

A tibble: 21 x 2
Height q1
<dbl> <dbl>

1 5.6 4
2 5.4 3
3 5.6 3
4 5.6 4
5 6 5
6 5.2 2
7 3.3 3
8 5.1 1
9 5.5 1
10 5.8 4
i 11 more rows

We could even add the base R head() function here. If we put each code step on a separate
line, you can now see that we are [1] taking the mydata dataset “and then” [2] selecting 2
variables “and then” [3] looking at the top 6 rows of the dataset.

select Height and q1 from mydata
and show only the top 6 rows
mydata %>%
dplyr::select(Height, q1) %>%

emorytidal.netlify.app 41

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

head()

A tibble: 6 x 2
Height q1
<dbl> <dbl>

1 5.6 4
2 5.4 3
3 5.6 3
4 5.6 4
5 6 5
6 5.2 2

TL;DR If %>% is a pipe, then what is |>??

The %>% pipe operator is implemented within tidyverse from the magrittr package
which is used by the tidyverse packages which started being used quite extensively by
R programmers over the last decade.

However, the rest of the R development community (which is much larger than just those
who use the tidyverse suite) also recently added a new base R pipe operator |> (since
R version 4.1.0).

Learn more in this tidyverse blog post from 2023

So, you do have the option to also use the base R |> pipe operator.

select Height and q1 from mydata
and show only the top 6 rows
mydata |>
dplyr::select(Height, q1) |>
head()

A tibble: 6 x 2
Height q1
<dbl> <dbl>

1 5.6 4
2 5.4 3
3 5.6 3
4 5.6 4
5 6 5
6 5.2 2

For now, we will stay with the %>% operator for consistency. But be aware that you will see
both approaches on the Internet when “Googling” for answers.

emorytidal.netlify.app 42

https://www.project-tidal.org/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Select variables with matching using starts_with()

When using dplyr::select() to select variables, there are several “helper functions” that are
useful for “selection”. You can see a list of these functions by running help("starts_with",
package = "tidyselect"). These “selection helper” functions are actually in the tidyselect
package which is loaded with the dplyr package.

Let’s use these functions to pull out all of the Likert-scaled “question” variables that start
with the letter "q".

mydata %>%
dplyr::select(starts_with("q"))

A tibble: 21 x 6
q1 q2 q3 q4 q5 q6

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4 NA NA 4 4 5
2 3 4 1 40 3 2
3 3 4 2 3 5 2
4 4 2 2 1 1 9
5 5 3 5 2 4 1
6 2 5 5 1 4 5
7 3 NA 4 3 9 2
8 1 4 1 3 1 4
9 1 1 5 5 1 2
10 4 44 1 1 4 5
i 11 more rows

emorytidal.netlify.app 43

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Pick rows using dplyr::filter()

In addition to selecting columns or variables from your dataset, you can also pull out a subset
of your data by “filtering” out only the rows you want.

For example, suppose we only want to look at the Age, WeightPRE for the Females in the
dataset indicates by GenderCoded equal to 2.

For reference, take a look at the mydata codebook - and here is a screenshot as well:

emorytidal.netlify.app 44

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Notice that:

• I changed the order of the columns, which is OK,
• and to filter out and KEEP only the rows for females, I typed GenderCoded == 2 using

two equal signs ==. R uses two == equal signs to perform a logical operation to ask does
the variable GenderCoded equal the value of 2, with either a TRUE or FALSE result. Only
the rows with a TRUE result are shown.

Be careful not to mix up = and ==

Odds are you will get errors at some point due to typos or other issues, but a common
error is to use a single = equals sign when trying to perform a logic operation. Remember
to use 2 equals signs == if you are trying to perform a TRUE/FALSE operation and use
only 1 equals sign = when assigning a value to a function argument.

select columns from mydata
and then only show rows for females
mydata %>%
select(GenderCoded, Age, WeightPRE) %>%
filter(GenderCoded == 2)

A tibble: 8 x 3
GenderCoded Age WeightPRE

<dbl> <dbl> <dbl>
1 2 50 167
2 2 48 165
3 2 51 110
4 2 46 167
5 2 40 200
6 2 99 180
7 2 35 175
8 2 36 190

Here is an example of the error you will get if you use a single = sign instead of == two.

select columns from mydata
and then only show rows for females
mydata %>%
select(GenderCoded, Age, WeightPRE) %>%
filter(GenderCoded = 2)

Error in `filter()`:
! We detected a named input.

emorytidal.netlify.app 45

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

� This usually means that you've used `=` instead of `==`.
� Did you mean `GenderCoded == 2`?
Run `rlang::last_trace()` to see where the error occurred.

emorytidal.netlify.app 46

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Filter rows using matching %in% operator

Another helpful operator in R is the %in% operator used for matching. Let’s suppose we wanted
to pull out the rows for specific subject IDs - perhaps you want to review only these records.

Let’s pull out the data for only IDs 14, 21 and 24. Rather than writing a complicated if-then-
else set of code steps, we can search for these IDs and only the rows with these IDs will be
kept.

mydata %>%
filter(SubjectID %in% c(14, 21, 24))

A tibble: 3 x 14
SubjectID Age WeightPRE WeightPOST Height SES GenderSTR GenderCoded
q1

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
<dbl>

1 14 35 190 200 5.8 1 Male 1
4
2 21 99 180 185 5.9 3 f 2
2
3 24 35 175 174 5.8 2 F 2
5
i 5 more variables: q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>

Sort/arrange rows using dplyr::arrange()

Here is another helpful function from dplyr. Suppose we want to find the 5 oldest people in
mydata and show their IDs.

Let’s use the dplyr::arrange() function which will sort our data based on the variable we
specify in increasing order (lowest to highest) by default. We will add the desc() function to
sort decreasing from largest to smallest.

Learn more by running help(arrange, package = "dplyr")

Note: There was someone with age 99 in this made-up dataset.

take mydata
select SubjectID and Age
sort descending by Age
show the top 5 IDs and Ages
mydata %>%
select(SubjectID, Age) %>%
arrange(desc(Age)) %>%

emorytidal.netlify.app 47

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

head(n=5)

A tibble: 5 x 2
SubjectID Age

<dbl> <dbl>
1 21 99
2 22 52
3 9 51
4 27 51
5 2 50

The oldest people are subject IDs 21, 22, 9, 27 and 2 who are age 99, 52, 51, 51 and 50 years
old respectively.

emorytidal.netlify.app 48

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

4. To create and modify variables.

To create and add new variables to the dataset, we can use either a base R approach or use
the mutate() function from the dplyr package. Let’s take a look at both approaches. In the
mydata dataset, we have Height in decimal feet and we have WeightPRE and WeightPOST in
pounds.

So, let’s compute BMI (body mass index) as follows from Height (in inches) and Weight (in
pounds):

𝐵𝑀𝐼 = (
𝑤𝑒𝑖𝑔ℎ𝑡(𝑙𝑏𝑠)

(ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑛𝑐ℎ𝑒𝑠))2) ∗ 703

Create New Variable - Base R Approach

Create a new variable using the $ selector operator. Then write out the mathematical equation.
I also had to multiply the height in decimal feet * 12 to get inches.

Compute BMI for the PRE Weight
mydata$bmiPRE <-
(mydata$WeightPRE * 703) / (mydata$Height * 12)^2

look at result
mydata$bmiPRE

[1] 10.58585 27.95901 22.26142 33.62564 32.95312 29.78997 26.89777
[8] 20.64644 26.95156 27.57341 29.21039 26.23996 25.24418 27.73176
[15] 29.79702 25.39656 27.06041 166.10166 28.54938 30.98891 NA

Look at the “Global Environment” or run the str() function to see if a new variable was
added to mydata - which should now have 15 variables instead of only 14.

You can also list the variable names in the updated dataset.

look at updated data structure
str(mydata)

spc_tbl_ [21 x 15] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ SubjectID : num [1:21] 1 2 3 4 5 6 8 9 12 14 ...
$ Age : num [1:21] 45 50 35 44 32 48 50 51 46 35 ...
$ WeightPRE : num [1:21] 68 167 143 216 243 165 60 110 167 190 ...
$ WeightPOST : num [1:21] 145 166 135 201 223 145 132 108 158 200 ...

emorytidal.netlify.app 49

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

$ Height : num [1:21] 5.6 5.4 5.6 5.6 6 5.2 3.3 5.1 5.5 5.8 ...
$ SES : num [1:21] 9 2 2 2 2 2 2 3 2 1 ...
$ GenderSTR : chr [1:21] "m" "f" NA "m" ...
$ GenderCoded: num [1:21] 1 2 NA 1 1 2 1 2 2 1 ...
$ q1 : num [1:21] 4 3 3 4 5 2 3 1 1 4 ...
$ q2 : num [1:21] NA 4 4 2 3 5 NA 4 1 44 ...
$ q3 : num [1:21] NA 1 2 2 5 5 4 1 5 1 ...
$ q4 : num [1:21] 4 40 3 1 2 1 3 3 5 1 ...
$ q5 : num [1:21] 4 3 5 1 4 4 9 1 1 4 ...
$ q6 : num [1:21] 5 2 2 9 1 5 2 4 2 5 ...
$ bmiPRE : num [1:21] 10.6 28 22.3 33.6 33 ...
- attr(*, "spec")=
.. cols(
.. SubjectID = col_double(),
.. Age = col_double(),
.. WeightPRE = col_double(),
.. WeightPOST = col_double(),
.. Height = col_double(),
.. SES = col_double(),
.. GenderSTR = col_character(),
.. GenderCoded = col_double(),
.. q1 = col_double(),
.. q2 = col_double(),
.. q3 = col_double(),
.. q4 = col_double(),
.. q5 = col_double(),
.. q6 = col_double()
..)
- attr(*, "problems")=<externalptr>

list the variable names in the
updated dataset
names(mydata)

[1] "SubjectID" "Age" "WeightPRE" "WeightPOST" "Height"
[6] "SES" "GenderSTR" "GenderCoded" "q1" "q2"
[11] "q3" "q4" "q5" "q6" "bmiPRE"

emorytidal.netlify.app 50

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Create New Variable - dplyr::mutate() Approach

In the dplyr package, you can create or modify variables using the mutate() function.

Compute BMI for the POST Weight
use the dplyr::mutate() function
mydata <- mydata %>%
mutate(

bmiPOST = (WeightPOST * 703) / (Height * 12)^2
)

check updates
str(mydata)

tibble [21 x 16] (S3: tbl_df/tbl/data.frame)
$ SubjectID : num [1:21] 1 2 3 4 5 6 8 9 12 14 ...
$ Age : num [1:21] 45 50 35 44 32 48 50 51 46 35 ...
$ WeightPRE : num [1:21] 68 167 143 216 243 165 60 110 167 190 ...
$ WeightPOST : num [1:21] 145 166 135 201 223 145 132 108 158 200 ...
$ Height : num [1:21] 5.6 5.4 5.6 5.6 6 5.2 3.3 5.1 5.5 5.8 ...
$ SES : num [1:21] 9 2 2 2 2 2 2 3 2 1 ...
$ GenderSTR : chr [1:21] "m" "f" NA "m" ...
$ GenderCoded: num [1:21] 1 2 NA 1 1 2 1 2 2 1 ...
$ q1 : num [1:21] 4 3 3 4 5 2 3 1 1 4 ...
$ q2 : num [1:21] NA 4 4 2 3 5 NA 4 1 44 ...
$ q3 : num [1:21] NA 1 2 2 5 5 4 1 5 1 ...
$ q4 : num [1:21] 4 40 3 1 2 1 3 3 5 1 ...
$ q5 : num [1:21] 4 3 5 1 4 4 9 1 1 4 ...
$ q6 : num [1:21] 5 2 2 9 1 5 2 4 2 5 ...
$ bmiPRE : num [1:21] 10.6 28 22.3 33.6 33 ...
$ bmiPOST : num [1:21] 22.6 27.8 21 31.3 30.2 ...

names(mydata)

[1] "SubjectID" "Age" "WeightPRE" "WeightPOST" "Height"
[6] "SES" "GenderSTR" "GenderCoded" "q1" "q2"
[11] "q3" "q4" "q5" "q6" "bmiPRE"
[16] "bmiPOST"

emorytidal.netlify.app 51

https://www.project-tidal.org/
https://dplyr.tidyverse.org/reference/mutate.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Create New Variable - add labels to codes by creating a “factor” type variable

As you probably noticed in the views of the mydata dataset above, there was originally a
variable where people were allowed to enter their gender using free text (the GenderSTR vari-
able). There were entries like “f”, “F”, “female”, “male”, “Male” and other variations. So,
another variable GenderCoded was included where 1=male and 2=female, but when we look
at mydata$GenderCoded all we see are 1’s and 2’s and NAs.

mydata$GenderCoded

[1] 1 2 NA 1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 1 NA

It would be nice if we could add some labels. One way to do this is to convert GenderCoded
from being a simple “numeric” variable to a new object class called a “factor” which includes
both numeric values and text labels.

Here is the base R approach to create a new factor type variable. Learn more by looking at
the help page for factor(), run help(factor, package = "base").

create a new factor with labels
mydata$GenderCoded.f <-
factor(mydata$GenderCoded,

levels = c(1, 2),
labels = c("Male", "Female"))

look at new variable
mydata$GenderCoded.f

[1] Male Female <NA> Male Male Female Male Female Female Male
[11] Male Female Female Male Male Female Male Male Female Male
[21] <NA>
Levels: Male Female

We can check the type each variable using the class() function.

class(mydata$GenderCoded)

[1] "numeric"

class(mydata$GenderCoded.f)

[1] "factor"

emorytidal.netlify.app 52

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Another quick way to see these class type differences is to use the table() function to get
the frequencies of each distinct value. I’m also adding the useNA = "ifany" option to also get
a count of any missing values. Learn more by running help(table, package = "base").

table of frequencies of GenderCoded - numeric class
table(mydata$GenderCoded, useNA = "ifany")

1 2 <NA>
11 8 2

table of GenderCoded.f - factor class
table(mydata$GenderCoded.f, useNA = "ifany")

Male Female <NA>
11 8 2

emorytidal.netlify.app 53

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

5. To get data summary and descriptive statistics.

Getting summary statistics

summary() function

One of the best functions that is part of base R is the summary() function. Let’s see what this
gives us for the mydata dataset.

As you can see for all of the numeric class variables, the summary() function gives us the min,
max, median, mean, 1st quartile and 3rd quartile and a count of the the number of missing
NAs. So, you can see the mean Age is 44.8 and the median Age is 44.0.

For the character variable GenderSTR all we know is it has a length of 21.

But for the factor type variable GenderCoded.f we get the number of Males, Females and
NAs.

summary(mydata)

SubjectID Age WeightPRE WeightPOST
Min. : 1.00 Min. :24.00 Min. : 60.0 Min. : 98.0
1st Qu.: 5.75 1st Qu.:35.75 1st Qu.:166.5 1st Qu.:142.5
Median :15.00 Median :44.00 Median :190.0 Median :177.0
Mean :15.30 Mean :44.80 Mean :185.2 Mean :172.2
3rd Qu.:23.25 3rd Qu.:50.00 3rd Qu.:230.0 3rd Qu.:203.2
Max. :32.00 Max. :99.00 Max. :260.0 Max. :240.0
NA's :1 NA's :1 NA's :1 NA's :1

Height SES GenderSTR GenderCoded
Min. :2.600 Min. :1.0 Length:21 Min. :1.000
1st Qu.:5.475 1st Qu.:2.0 Class :character 1st Qu.:1.000
Median :5.750 Median :2.0 Mode :character Median :1.000
Mean :5.550 Mean :2.3 Mean :1.421
3rd Qu.:6.125 3rd Qu.:2.0 3rd Qu.:2.000
Max. :6.500 Max. :9.0 Max. :2.000
NA's :1 NA's :1 NA's :2

q1 q2 q3 q4
Min. : 1.00 Min. : 1.000 Min. :1.00 Min. : 1.000
1st Qu.: 1.75 1st Qu.: 2.000 1st Qu.:1.00 1st Qu.: 2.000
Median : 3.00 Median : 4.000 Median :3.00 Median : 3.000
Mean : 3.35 Mean : 5.526 Mean :3.15 Mean : 5.062
3rd Qu.: 4.25 3rd Qu.: 4.500 3rd Qu.:4.25 3rd Qu.: 4.000
Max. :11.00 Max. :44.000 Max. :9.00 Max. :40.000
NA's :1 NA's :2 NA's :1 NA's :5

q5 q6 bmiPRE bmiPOST

emorytidal.netlify.app 54

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Min. : 1.000 Min. :1.000 Min. : 10.59 Min. :12.99
1st Qu.: 2.000 1st Qu.:2.000 1st Qu.: 26.03 1st Qu.:25.38
Median : 4.000 Median :4.000 Median : 27.65 Median :26.42
Mean : 9.176 Mean :3.706 Mean : 33.78 Mean :29.43
3rd Qu.: 5.000 3rd Qu.:5.000 3rd Qu.: 29.79 3rd Qu.:28.71
Max. :99.000 Max. :9.000 Max. :166.10 Max. :70.77
NA's :4 NA's :4 NA's :1 NA's :1
GenderCoded.f
Male :11
Female: 8
NA's : 2

So, the summary() function is helpful, but you’ll notice we do not get the standard deviation.
For some reason that was left out of the original summary() statistics function.

There are a few other descriptive statistics functions that can be useful. There is a describe()
function in both the Hmisc package and the psych packages.

Hmisc::describe() function

Let’s look at Hmisc::describe() for a couple of the variables.

You’ll notice that this still doesn’t give us the standard deviation, but we get the min, max,
mean, median, as well as the .05 (5th percentile) and others, and the output includes a
summary of the frequency of the distinct values.

mydata %>%
select(Age, GenderCoded.f, bmiPRE) %>%
Hmisc::describe()

.

3 Variables 21 Observations
--
Age

n missing distinct Info Mean pMedian Gmd .05
20 1 14 0.994 44.8 43 13.81 31.60
.10 .25 .50 .75 .90 .95

34.70 35.75 44.00 50.00 51.10 54.35

emorytidal.netlify.app 55

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/Hmisc/
https://cran.r-project.org/web/packages/psych/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Value 24 32 35 36 40 43 44 45 46 48 50 51 52
Frequency 1 1 3 2 1 1 2 1 1 1 2 2 1
Proportion 0.05 0.05 0.15 0.10 0.05 0.05 0.10 0.05 0.05 0.05 0.10 0.10 0.05

Value 99
Frequency 1
Proportion 0.05

For the frequency table, variable is rounded to the nearest 0
--
GenderCoded.f

n missing distinct
19 2 2

Value Male Female
Frequency 11 8
Proportion 0.579 0.421
--
bmiPRE

n missing distinct Info Mean pMedian Gmd .05
20 1 20 1 33.78 27.73 18.52 20.14
.10 .25 .50 .75 .90 .95

22.10 26.03 27.65 29.79 33.02 40.25

10.5858489229025 (1, 0.05), 20.6464394036482 (1, 0.05), 22.2614175878685 (1,
0.05), 25.2441827061189 (1, 0.05), 25.3965599815035 (1, 0.05),
26.2399593896503
(1, 0.05), 26.8977655341292 (1, 0.05), 26.9515610651974 (1, 0.05),
27.0604126424232 (1, 0.05), 27.5734079799181 (1, 0.05), 27.7317554240631 (1,
0.05), 27.9590096784027 (1, 0.05), 28.5493827160494 (1, 0.05),
29.2103855937103
(1, 0.05), 29.7899716469428 (1, 0.05), 29.7970241970486 (1, 0.05),
30.9889051649305 (1, 0.05), 32.953125 (1, 0.05), 33.6256377551021 (1, 0.05),
166.101660092045 (1, 0.05)

For the frequency table, variable is rounded to the nearest 0
--

emorytidal.netlify.app 56

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

psych::describe() function

The psych::describe() function only works on numeric data. So, let’s look at Age and
bmiPRE. This function now gives us the standard deviation sd and even the mad which is the
mean absolute deviation.

mydata %>%
select(Age, bmiPRE) %>%
psych::describe()

vars n mean sd median trimmed mad min max range skew
Age 1 20 44.80 14.87 44.00 43.06 10.38 24.00 99.0 75.00 2.21
bmiPRE 2 20 33.78 31.53 27.65 27.79 3.17 10.59 166.1 155.52 3.66

kurtosis se
Age 6.10 3.32
bmiPRE 12.53 7.05

Base R specific statistics functions

There are many built-in functions in base R for computing specific statistics like mean(), sd()
for standard deviation, median(), min(), max() and quantile() to get specific percentiles.

Let get some summary statistics for different variables in mydata.

get min, max for Age
min(mydata$Age)

[1] NA

max(mydata$Age)

[1] NA

WAIT!? - why did I get NA? Since there is missing data in this dataset, we need to tell these
R functions how to handle the missing data. We need to add na.rm=TRUE to remove the NAs
and then compute the min() and max() for the non-missing values.

min(mydata$Age, na.rm = TRUE)

[1] 24

emorytidal.netlify.app 57

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

max(mydata$Age, na.rm = TRUE)

[1] 99

If we want, we could get the non-parametric statistics of median (which is the 50th percentile),
25th and 75th percentiles for the interquartile range. Let’s get these statistics for bmiPRE.

get median bmiPRE
and 25th and 75th percentiles for bmiPRE
median(mydata$bmiPRE,

na.rm = TRUE)

[1] 27.65258

quantile(mydata$bmiPRE,
probs = 0.25,
na.rm = TRUE)

25%
26.02911

quantile(mydata$bmiPRE,
probs = 0.75,
na.rm = TRUE)

75%
29.79173

We can also get the mean() and sd() for Height.

mean(mydata$Height, na.rm = TRUE)

[1] 5.55

sd(mydata$Height, na.rm = TRUE)

[1] 0.9795273

emorytidal.netlify.app 58

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

dplyr::summarize() function

The dplyr package also has a summarize() function you can use to get specific statistics of
your choosing. For example, let’s get the mean() and sd() for Age in one code step.

mydata %>%
dplyr::summarise(

mean_age = mean(Age, na.rm = TRUE),
sd_age = sd(Age, na.rm = TRUE)

)

A tibble: 1 x 2
mean_age sd_age

<dbl> <dbl>
1 44.8 14.9

We can do this same code again but add the dplyr::group_by() function to add a grouping
variable to get the statistics by.

NOTE: The dplyr::group_by() function must come BEFORE dplyr::summarise().

Let’s get the summary stats (mean and sd) for Age by GenderCoded.f.

mydata %>%
dplyr::group_by(GenderCoded.f) %>%
dplyr::summarise(

mean_age = mean(Age, na.rm = TRUE),
sd_age = sd(Age, na.rm = TRUE)

)

A tibble: 3 x 3
GenderCoded.f mean_age sd_age
<fct> <dbl> <dbl>

1 Male 41.5 8.77
2 Female 50.6 20.5
3 <NA> 35 NA

emorytidal.netlify.app 59

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Each code step may result in different object classes

As you work through a series of code steps in an analysis or computational workflow,
each step may produce an output object with a different class.

Let’s look at each step of the code above to produce a table of means and standard deviations
of Age by GenderCoded.f.

STEP 1 - begin with the dataset

We start with the dataset mydata which is a “tibble” “data.frame” since we imported the data
using one of the tidyverse packages: readr, readxl or haven all of which create a tbl_df
class object.

Step 1
class(mydata)

[1] "tbl_df" "tbl" "data.frame"

STEP 2 - create a “grouped” data.frame

Notice that as soon as we use the dplyr::group_by() function, the result is an updated type
of “tibble”“data.frame” which is now a grouped_df class object. This object class is described
at https://dplyr.tidyverse.org/articles/grouping.html.

The grouped_df is similar to:

• applying the SPLIT FILE command in the SPSS software
• or using the BY command in SAS to “work with grouped data”

save the output of step 2
step2 <- mydata %>%
dplyr::group_by(GenderCoded.f)

class(step2)

[1] "grouped_df" "tbl_df" "tbl" "data.frame"

STEP 3 - after the summarise step

After STEP 3, another tbl_df is created.

emorytidal.netlify.app 60

https://www.project-tidal.org/
https://dplyr.tidyverse.org/articles/grouping.html
https://www.ibm.com/docs/en/spss-statistics/30.0.0?topic=transformations-split-file
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/basess/n0t6f5rx0tvsvfn1t1r0ndy4n3e7.htm
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

step3 <- mydata %>%
dplyr::group_by(GenderCoded.f) %>%
dplyr::summarise(

mean_age = mean(Age, na.rm = TRUE),
sd_age = sd(Age, na.rm = TRUE)

)

class(step3)

[1] "tbl_df" "tbl" "data.frame"

Since this saved output object step3 is a tbl_df, we can use it like any other “data.frame”
object. For example, we can pull out the mean_age column:

pull out the mean_age column using $
step3$mean_age

[1] 41.45455 50.62500 35.00000

pull out the sd_age column using select()
step3 %>%
select(sd_age)

A tibble: 3 x 1
sd_age
<dbl>

1 8.77
2 20.5
3 NA

emorytidal.netlify.app 61

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Make summary tables

Creating nicely formatted summary tables is an active area of development in the R community.
So, I’m sure there are new functions and packages that I may not have shown here. But here
are a few packages I use often for making tables of summary statistics. Most of these are
designed to work within a Rmarkdown document.

arsenal package for tables

The arsenal package is useful for making tables - especially with Rmarkdown - to be explained
further in a later session Module 1.3.6. Learn more at tableby() vignette.

Here is a quick example of some summary statistics for Age, bmiPRE, and SES by
GenderCoded.f using the tableby() function.

First let’s add labels for SES and create a factor variable.

mydata$SES.f <-
factor(mydata$SES,

levels = c(1, 2, 3),
labels = c("low income",

"average income",
"high income"))

library(arsenal)
tab1 <- tableby(GenderCoded.f ~ Age + bmiPRE +SES.f,

data = mydata)
summary(tab1)

Male (N=11) Female (N=8) Total (N=19)
p

value
Age 0.199
Mean (SD) 41.455 (8.768) 50.625

(20.493)
45.316 (15.089)

Range 24.000 - 52.000 35.000 - 99.000 24.000 - 99.000
bmiPRE 0.370
Mean (SD) 40.230 (42.193) 26.347 (2.785) 34.384 (32.274)
Range 10.586 -

166.102
20.646 - 29.790 10.586 -

166.102
SES.f 0.625
N-Miss 1 0 1
low income 2 (20.0%) 2 (25.0%) 4 (22.2%)

emorytidal.netlify.app 62

https://www.project-tidal.org/
module136_ReproducibleResearch.html
https://mayoverse.github.io/arsenal/articles/tableby.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Male (N=11) Female (N=8) Total (N=19)
p

value
average income 7 (70.0%) 4 (50.0%) 11 (61.1%)
high income 1 (10.0%) 2 (25.0%) 3 (16.7%)

emorytidal.netlify.app 63

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

gtsummary package for tables

The gtsummary package is also useful for making tables. We can even use it to make nicely for-
matted tables in the “Viewer” window pane or in Rmarkdown. Learn more at tbl_summary()
vignette.

Here is a quick example of some summary statistics for Age and bmiPRE by GenderCoded.f
using the tbl_summary() function.

library(gtsummary)

mydata %>%
select(Age, bmiPRE, SES.f, GenderCoded.f) %>%
tbl_summary(by = GenderCoded.f)

Table 2

Characteristic Male N = 111 Female N = 81

Age 44 (35, 50) 47 (38, 51)
bmiPRE 29 (27, 33) 27 (25, 28)
SES.f
 low income 2 (20%) 2 (25%)
 average income 7 (70%) 4 (50%)
 high income 1 (10%) 2 (25%)
 Unknown 1 0
1Median (Q1, Q3); n (%)

emorytidal.netlify.app 64

https://www.project-tidal.org/
https://www.danieldsjoberg.com/gtsummary/articles/tbl_summary.html
https://www.danieldsjoberg.com/gtsummary/articles/tbl_summary.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

tableone package for making summary tables

The output produced from tableone is simple text output.

library(tableone)

tableone::CreateTableOne(
data = mydata,
vars = c("Age", "bmiPRE", "SES.f"),
strata = "GenderCoded.f"

)

Stratified by GenderCoded.f
Male Female p test

n 11 8
Age (mean (SD)) 41.45 (8.77) 50.62 (20.49) 0.199
bmiPRE (mean (SD)) 40.23 (42.19) 26.35 (2.79) 0.370
SES.f (%) 0.625

low income 2 (20.0) 2 (25.0)
average income 7 (70.0) 4 (50.0)
high income 1 (10.0) 2 (25.0)

emorytidal.netlify.app 65

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

gmodels package for R-x-C tables

If we want to look at a “cross-table” similar to output from SPSS or SAS, the gmodels package
has the CrossTable() function that creates text-based tables similar to these other statistics
software packages.

Let’s get the frequencies and columns percentages for SES by gender. The first variable is the
row variable, the second is the column variable.

library(gmodels)

CrossTable(mydata$SES.f, # row variable
mydata$GenderCoded.f, # column variable
prop.t = FALSE, # turn off percent of total
prop.r = FALSE, # turn off percent of row
prop.c = TRUE, # turn on percent of column
prop.chisq = FALSE, # turn off percent for chisq test
format = "SPSS") # format like SPSS

Cell Contents
|-------------------------|
| Count |
Column Percent

Total Observations in Table: 18

| mydata$GenderCoded.f
mydata$SES.f | Male | Female | Row Total |

---------------|-----------|-----------|-----------|
low income | 2 | 2 | 4 |

| 20.000% | 25.000% | |
---------------|-----------|-----------|-----------|
average income | 7 | 4 | 11 |

| 70.000% | 50.000% | |
---------------|-----------|-----------|-----------|

high income | 1 | 2 | 3 |
| 10.000% | 25.000% | |

---------------|-----------|-----------|-----------|
Column Total | 10 | 8 | 18 |

| 55.556% | 44.444% | |
---------------|-----------|-----------|-----------|

emorytidal.netlify.app 66

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Table Inspiration

Making effective, nicely formatted tables from R and Rmarkdown has been an active area of
development these past few years. In fact, I encourage you to check out the winners of the
last few Table Contests:

• 2024 Table Contest Winners
• 2022 Table Contest Winners
• 2021 Table Contest Winners

Other Table Resources and Packages include:

• https://bookdown.org/yihui/rmarkdown-cookbook/table-other.html
• https://epirhandbook.com/en/new_pages/tables_descriptive.html
• gt package on CRAN and gt package website
• kableExtra package on CRAN and kableExtra package website
• flextable package on CRAN and flextable package website and flextable book
• huxtable package on CRAN

emorytidal.netlify.app 67

https://www.project-tidal.org/
https://posit.co/blog/2024-table-contest-winners/
https://posit.co/blog/winners-of-the-2022-table-contest/
https://posit.co/blog/winners-of-the-2021-table-contest/
https://bookdown.org/yihui/rmarkdown-cookbook/table-other.html
https://epirhandbook.com/en/new_pages/tables_descriptive.html
https://cran.r-project.org/web/packages/gt/
https://gt.rstudio.com/
https://cran.r-project.org/web/packages/kableExtra/
https://haozhu233.github.io/kableExtra/
https://cran.r-project.org/web/packages/flextable/
https://davidgohel.github.io/flextable/
https://ardata-fr.github.io/flextable-book/
https://cran.r-project.org/web/packages/huxtable/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

6. Exporting/Saving Data

Throughout this lesson we have worked with the mydata dataset. We have made some changes
and created new variables. Let’s save the updates to this little dataset for use in later mod-
ules.

Using the save() function

Save mydata as *.Rdata native R binary format

As we move forward in our lesson modules, we will mostly be working with the “native” format
for datafiles (and objects) which have the extension of *.RData or *.rda. These file formats
are efficient in terms of saving memory and speed for faster loading of data.

R data binary formats registered with Library of Congress

The “R Data Format Family (.rdata, .rda)” are registered with the Library of Congress
under the “Sustainability of Digital Formats”. The description summary states:

“The RData format (usually with extension .rdata or .rda) is a format de-
signed for use with R, a system for statistical computation and related graph-
ics, for storing a complete R workspace or selected”objects” from a workspace
in a form that can be loaded back by R. The save function in R has options
that result in significantly different variants of the format. This description
is for the family of formats created by save and closely related functions.
A workspace in R is a collection of typed “objects” and may include much
more than the typical tabular data that might be considered a “dataset,”
including, for example, results of intermediate calculations and scripts in the
R programming language. A workspace may also contain several datasets,
which are termed “data frames” in R.”

Let’s save the mydata data.frame object as “mydata.RData”, using the save() function. See
help(save, package = "base").

save the mydata dataset object
save(mydata,

file = "mydata.RData")

emorytidal.netlify.app 68

https://www.project-tidal.org/
https://www.loc.gov/preservation/digital/formats/fdd/fdd000470.shtml
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Save All Objects in Global Environment as *.Rdata

It is worth noting that the code above specifically ONLY saves the mydata object. Assuming
that your “Global Environment” was empty at the beginning of your computing session at the
beginning of this Module 1.3.2, we have created 6 objects so far:

• foreignhistory - created above looking at the CRAN history for the foreign package
• havenhistory - created above looking at the CRAN history for the haven package
• mydata - main dataset imported above
• step2 - created to illustrate the %>% stepwise programming workflow
• step3 - created to illustrate the %>% stepwise programming workflow
• tab1 - created above to make a table using the arsenal package

Suppose we want to save ALL of these objects for a future computing session or if you’d like
to share all of these objects with someone else on your team.

We can save the whole Global Environment or select objects in the environment also to a
*.RData file to be read back into a future computing session.

To save all objects in the Global Environment, we can use save.image():

save all objects from module 1.3.2
save.image(file = "module132.RData")

emorytidal.netlify.app 69

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Save More than One Object in Global Environment as *.Rdata

To save one or more objects for future use - simply list the object names and then save them
into an *.RData file.

save mydata and tab1
save(mydata, tab1,

file = "mydata_tab1.RData")

Reading Objects Saved as *.Rdata Back Into Session

To test and make sure these items were saved as we expect, let’s remove all objects from our
Global Environment and load them back in.

Be careful using rm(list= ls())

The use of the rm(list= ls()) should NOT be used unless you know you have saved
everything up to this point. Once you remove all objects from your Global Environment,
it cannot be undone. You can either rerun the R code to recreate these objects, or go
through the steps described below to save and re-load your objects into your session.

remove all objects
rm(list = ls())

check that global environment is empty
ls()

character(0)

Read back in only the mydata file.

read in mydata
load(file = "mydata.RData")

check objects in global environment
ls()

[1] "mydata"

I’ll remove all objects again for to illustrate the next use of load() function.

emorytidal.netlify.app 70

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

rm(list = ls())

Read back in both the mydata and tab1 objects

read in mydata_tab1
load(file = "mydata_tab1.RData")

check objects in global environment
ls()

[1] "mydata" "tab1"

rm(list = ls())

Read back in all objects saved from Module 1.3.2.

read in module132.RData
load(file = "module132.RData")

check objects in global environment
ls()

[1] "foreignhistory" "havenhistory" "mydata" "step2"
[5] "step3" "tab1"

rm(list = ls())

emorytidal.netlify.app 71

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Save/export data to other formats

In addition to use the built-in save() and save.image() functions, we can also export (or
save) data objects from R into other formats like CSV and those for specific statistics software
like SPSS (*.sav), SAS (*.XPT)and Stata (*.dta).

Export/Write CSV and EXCEL

In the readr package, we can use write_csv() to save our updated data as a CSV file which
can be read by other software like Excel.

I’ll load the data back in and then save/export it as other formats.

read in mydata
load(file = "mydata.RData")

write as CSV
readr::write_csv(mydata,

file = "mydata_updated.csv")

Export/Write for Other Software (SPSS, SAS, Stata)

We can also use the haven package to export/save the updated mydata dataset as a SPSS
(*.sav), SAS (*.XPT) or Stata (*.dta) file format.

Code to export to SPSS *.sav format

haven::write_sav(mydata,
path = "mydata_updated.sav")

Rename variable “GenderCoded.f” and “SES.f” to “GenderCoded_f” and “SES_f” to export
to SAS or Stata since the “*.f” won’t work in a variable name in these software.

rename GenderCoded.f and SES.f since the
xxx.f wont work for SAS or Stata
names(mydata)[names(mydata) == "GenderCoded.f"] <-
"GenderCoded_f"

names(mydata)[names(mydata) == "SES.f"] <-
"SES_f"

Code to export to SAS using the “XPT” format

emorytidal.netlify.app 72

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

haven::write_xpt(mydata,
path = "mydata_updated.xpt")

Code to export to Stata *.dta format

haven::write_dta(mydata,
path = "mydata_updated.dta")

If you have these other statistical software on your computer, try opening these new exported
files into that software to confirm they worked.

Some import/export work better than others

Be aware that many of these import/export functions do work pretty well, but some
features of functionality of native formats used by other software packages may not work
fully. Read the documentation for each package and function to understand what the
limitations may be. For example, importing and exporting SAS *.sas7bdat formatted
files can be problematic.

emorytidal.netlify.app 73

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

R Code For This Module

• module_132.R

References

Csárdi, Gábor, and Maëlle Salmon. 2025. Pkgsearch: Search and Query CRAN r Packages.
https://github.com/r-hub/pkgsearch.

Heinzen, Ethan, Jason Sinnwell, Elizabeth Atkinson, Tina Gunderson, and Gregory Dougherty.
2021. Arsenal: An Arsenal of r Functions for Large-Scale Statistical Summaries. https:
//github.com/mayoverse/arsenal.

Iannone, Richard. 2023. Fontawesome: Easily Work with Font Awesome Icons. https://
github.com/rstudio/fontawesome.

R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Sjoberg, Daniel D., Joseph Larmarange, Michael Curry, Jessica Lavery, Karissa Whiting, and
Emily C. Zabor. 2024. Gtsummary: Presentation-Ready Data Summary and Analytic
Result Tables. https://github.com/ddsjoberg/gtsummary.

Sjoberg, Daniel D., Karissa Whiting, Michael Curry, Jessica A. Lavery, and Joseph Lar-
marange. 2021. “Reproducible Summary Tables with the Gtsummary Package.” The R
Journal 13: 570–80. https://doi.org/10.32614/RJ-2021-053.

Warnes, Gregory R., Ben Bolker, Thomas Lumley, Randall C Johnson. Contributions from
Randall C. Johnson are Copyright SAIC-Frederick, Inc. Funded by the Intramural Research
Program, of the NIH, National Cancer Institute, and Center for Cancer Research under
NCI Contract NO1-CO-12400. 2022. Gmodels: Various r Programming Tools for Model
Fitting. https://doi.org/10.32614/CRAN.package.gmodels.

Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023.
Dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org.

Yoshida, Kazuki, and Alexander Bartel. 2022. Tableone: Create Table 1 to Describe Baseline
Characteristics with or Without Propensity Score Weights. https://github.com/kaz-yos/
tableone.

Other Helpful Resources

Other Helpful Resources

emorytidal.netlify.app 74

https://www.project-tidal.org/
module_132.R
https://github.com/r-hub/pkgsearch
https://github.com/mayoverse/arsenal
https://github.com/mayoverse/arsenal
https://github.com/rstudio/fontawesome
https://github.com/rstudio/fontawesome
https://www.R-project.org/
https://github.com/ddsjoberg/gtsummary
https://doi.org/10.32614/RJ-2021-053
https://doi.org/10.32614/CRAN.package.gmodels
https://dplyr.tidyverse.org
https://github.com/kaz-yos/tableone
https://github.com/kaz-yos/tableone
./additionalResources.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

	Session Objectives
	0. Prework - Before You Begin
	Install Packages

	1. To read in data.
	Begin with a NEW RStudio Project
	Importing Data
	Exploring Built-in Datasets

	2. To view The Data.
	Look at small data in Console
	Look the ``structure'' of the dataset

	3. To subset the data - select and filter.
	Using base R packages and functions
	Using dplyr functions

	4. To create and modify variables.
	Create New Variable - Base R Approach
	Create New Variable - dplyr::mutate() Approach
	Create New Variable - add labels to codes by creating a ``factor'' type variable

	5. To get data summary and descriptive statistics.
	Getting summary statistics
	Make summary tables

	6. Exporting/Saving Data
	Using the save() function
	Save/export data to other formats

	R Code For This Module
	References
	Other Helpful Resources

