%
/%@ﬂ Project TIDAL

Module 1.3: Data Analytics Using R

1.3.3: Data Visualization

Session Objectives

(Asynchronous-Online)

1. To visualize data using different R packages.

This lesson module will include:

0. Prework - Before You Begin

Introductions to ggplot2 and other relevant R packages for graphics.
Visualizing one, two, and more variables at a time.

Summary Tables with Graphics

Lists of other resources: books, blogs, websites, etc.

A. Install packages

If you do not have them already, install the following packages from CRAN:

ggplot2

dplyr

patchwork

ggpubr

GGally

vcd

Optional gapminder
Optional gganimate
Optional plotly
Optional gt
Optional gtExtras

CC BY-NC-ND 4.0

emorytidal.netlify.app 1

https://www.project-tidal.org/
https://cloud.r-project.org/web/packages/ggplot2/
https://cloud.r-project.org/web/packages/dplyr/
https://cran.r-project.org/web/packages/patchwork/
https://cran.r-project.org/web/packages/ggpubr/
https://cran.r-project.org/web/packages/GGally/
https://cran.r-project.org/web/packages/vcd/
https://cran.r-project.org/web/packages/gapminder/
https://cran.r-project.org/web/packages/gganimate/
https://cran.r-project.org/web/packages/plotly/
https://cran.r-project.org/web/packages/gt/
https://cran.r-project.org/web/packages/gtExtras/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%/@:‘ Project TIDAL Module 1.3: Data Analytics Using R

B. Open/create your RStudio project

Let’s start with the myfirstRproject RStudio project you created in Module 1.3.2 - part 1.
If you have not yet created this myfirstRproject RStudio project, go ahead and create a new
RStudio Project for this lesson. Feel free to name your project whatever you want, it does not
need to be named myfirstRproject.

C. Create a new R script and load data into your computing session

At the end of Module 1.3.2 - part 6 you saved the mydata dataset in the mydata.RData R
binary format.

1. Go ahead and create a new R script (*.R) for this computing session. We did this already
in Module 1.3.1 - part 3 - refer to this section to remember how to create a new R script.

2. Put this code into your new R script (*.R) to load mydata.RData into your current
computing session.

load mydata
load(file = "mydata.RData")

I Data must/should be in your RStudio project

REMEMBER R/RStudio automatically looks in your current RStudio project folder
for all files for your current computing session. So, make sure the mydata.RData file is
in your current RStudio project myfirstRproject folder on your computer.

For a more detailed overview of RStudio projects:

o read “Chapter 6: R projects” in the The Epidemiologist R Handbook and
o refer to “Chapter 45 Directory interactions” in the The Epidemiologist R Handbook.

D. Get Inspired!

e Get Inspired at The R Graph Gallery
e Also see the Top Curated R Graphs
¢ Also see Additional Resources - R Graphics

emorytidal.netlify.app 2

https://www.project-tidal.org/
module132_DataWrangling.html#begin-with-a-new-rstudio-project
module132_DataWrangling.html#save-mydata-as-.rdata-native-r-binary-format
module131_IntroRRStudio.html#create-your-first-r-script
https://epirhandbook.com/en/new_pages/r_projects.html
https://epirhandbook.com/en/new_pages/directories.html
https://r-graph-gallery.com/
https://r-graph-gallery.com/best-r-chart-examples
additionalResources.html#r-graphics
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@
Project TIDAL Module 1.3: Data Analytics Using R

1. Base R graphical functions

The base R graphics package is very powerful on its own. As you saw in 1.3.1: Introduction to
R and R Studio, we can make a simple 2-dimensional scatterplot with the plot() function.

Base R - Scatterplot

For example, let’s make a plot of Height on the X-axis (horizontal) and WeightPRE on the
Y-axis (vertical) from the mydata dataset. Since we are using base R function, we have to use
the $selector to identify the variables we want inside the mydata dataset.

Learn more about the plot() function and arguments by running help(plot, package =
"graphics").

plot(x
y

mydata$Height,
mydata$WeightPRE)

emorytidal.netlify.app 3

https://www.project-tidal.org/
module131_IntroRRStudio.html
module131_IntroRRStudio.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

(@]

o

LD — @]

AN 10 o

O @]
o @]

3 o
w N
x [e]e)
= o°
o
'g o ©O
» 3
= o
©
>
e

@]

(@)

o_

—

O
@]
I I I I
3 4 5 6

mydata$Height

The plot does look a little odd - this is due to some data errors in the mydata dataset. We
will fix these below. But for now, you can “see” that these data may have some issues that
need to be addressed. For example:

o There are 2 people with heights < 5 feet tall which may be suspect
e There are 2 people with a weight < 100 pounds which may be data entry errors or
incorrect units

CC BY-NC-ND 4.0 emorytidal.netlify.app 4

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%3' Project TIDAL Module 1.3: Data Analytics Using R

For now, let’s add some additional graphical elements:

e a better label for the x-axis
e a better label for the y-axis
e a title for the graph

o a subtitle for the graph

plot(x = mydata$Height,
y = mydata$WeightPRE,
xlab = "Height (in decimal inches)",
ylab = "Weight (in pounds) - before intervention",

main = "Weight by Height in the Mydata Project",
sub = "Hypothetical Madeup mydata Dataset")

emorytidal.netlify.app 5

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

++

@«
& Project TIDAL Module 1.3: Data Analytics Using R

Weight by Height in the Mydata Project

o)
o
D o)
o o
[
i) o o)
= o
) o)
2
) o
2 & 7 o
o 00
S o
S o)
—? o (e)e}
—~ O
R
o o)
>
o
o
£
N
o O
T o
o o -
2 9
o)
o)
[[[[
3 4 5 6

Height (in decimal inches)
Hypothetical Madeup mydata Dataset

CC BY-NC-ND 4.0 emorytldalnethfyapp 6

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

And we could also add color and change the shapes - for example, let’s color and shape the
points by GenderCoded, the numeric coding for gender where 1=Male, 2=Female.

And we can add a legend inside the plot as well.

1 Plot code inspiration

I pulled this code together from code examples at:

o Stackoverflow post on using pch

e STHDA post on point shapes

e« STDHA post on base R legends

e R-Graph Galler post on base R legends

plot(x = mydata$Height,
y = mydata$WeightPRE,
col = c("blue", "green") [mydata$GenderCoded],

pch = c(15, 19) [mydata$GenderCoded],
xlab = "Height (in decimal inches)",
ylab = "Weight (in pounds) - before intervention",

main = "Weight by Height in the Mydata Project",
sub = "Hypothetical Madeup mydata Dataset")
legend (3, 250, legend=c("Male", "Female"),
col=c("blue", "green"), pch = c(15, 19), cex=0.8)

emorytidal.netlify.app 7

https://www.project-tidal.org/
https://stackoverflow.com/questions/12919816/plotting-in-different-shapes-using-pch-argument
https://www.sthda.com/english/wiki/r-plot-pch-symbols-the-different-point-shapes-available-in-r
https://www.sthda.com/english/wiki/add-legends-to-plots-in-r-software-the-easiest-way
https://r-graph-gallery.com/119-add-a-legend-to-a-plot.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

Weight by Height in the Mydata Project

]
o
g —]
= Male n -
[
5 - Female -
-
c]
(5]]
e
2 8
£ N
o]
P
Rl
[45)
o
|
— o
@) N —
he] —
c
S
o
o
£
N
o
< o
o o
S S
]
]
[[[[
3 4 5 6

Height (in decimal inches)
Hypothetical Madeup mydata Dataset

The STHDA website on “R Base Graphs” has a nice walk through of using the base R graphics
package to make really nice plots.

CC BY-NC-ND 4.0 emorytldalnethfyapp 3

https://www.project-tidal.org/
https://www.sthda.com/english/wiki/r-base-graphs
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Base R - Histogram

Basic Histogram

As we noted above, let’s take a look at the distribution of the heights in the mydata dataset.
There is a specific hist () function in the graphics package for making histograms, learn
more by running help(hist, package = "graphics").

Notice that we can use some of the same arguments as we did above for plot ().

hist (mydata$Height,
xlab = "Height (in decimal inches)",
col = "lightblue",
border = "black",
main = "Histogram of Heights",
sub = "Hypothetical Madeup mydata Dataset")

emorytidal.netlify.app

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

Histogram of Heights

Frequency
4
|

I I I I
3 4 5 6

Height (in decimal inches)
Hypothetical Madeup mydata Dataset

@ Colors available

There are 657 names of colors immediately available to you from the built-in grDevices
Base R package which works in conjunction with graphics. You can view the names of
all of these colors by running colors(). You can also learn more at:

o https://www.sthda.com/english /wiki/colors-in-r#google_ vignette
o https://r-graph-gallery.com/42-colors-names.html
o https://r-graph-gallery.com/ggplot2-color.html - which explains how colors can be

CC BY-NC-ND 4.0 emorytidal.netlify.app 10

https://www.project-tidal.org/
https://www.sthda.com/english/wiki/colors-in-r#google_vignette
https://r-graph-gallery.com/42-colors-names.html
https://r-graph-gallery.com/ggplot2-color.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

specified using the built-in color names, but can also be specified using RGB (red,
green, blue) indexes or even Hexcodes for which there are many online tools like
https://htmlcolorcodes.com/.

code not run here - do in your session
list built-in colors
colors()

emorytidal.netlify.app 11

https://www.project-tidal.org/
https://htmlcolorcodes.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Histogram with Overlaid Density Curve

Statisticians often like seeing a histogram (for the frequencies or probability of each value for
the variable in the dataset) with an overlaid density curve (which is “smoothed” line for these
probabilities). Statistical software like SAS and SPSS make this really easy. However, in R,
we need to think through the process to get this to work.

o First, we need to make the histogram using probabilities for the “bars” in the histogram
instead of frequency counts
e Second, we need to add a density line curve over the histogram “bars”.

See these online examples:

o https://r-charts.com/distribution/histogram-curves/
o https://www.datacamp.com/doc/r/histograms-and-density
o https://www.r-bloggers.com/2012/09/histogram-density-plot-combo-in-r/

make histogram as we did above
add freq = FALSE

hist (mydata$Height,
freq = FALSE,
xlab = "Height (in decimal inches)",

col = "lightblue",

border = "black",

main = "Histogram of Heights",

sub = "Hypothetical Madeup mydata Dataset")

add density curve line

add na.rm=TRUE to remove

the missing values in Height

lines(density(mydata$Height, na.rm=TRUE),
col = "black")

emorytidal.netlify.app 12

https://www.project-tidal.org/
https://r-charts.com/distribution/histogram-curves/
https://www.datacamp.com/doc/r/histograms-and-density
https://www.r-bloggers.com/2012/09/histogram-density-plot-combo-in-r/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Histogram of Heights

o _
o
N /\
o
2
o < |
T ©
Q
N
o
o _|
o
| | | |
3 4 5 6
Height (in decimal inches)
Hypothetical Madeup mydata Dataset
cce emorytidal.netlify.app 13

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@
Project TIDAL Module 1.3: Data Analytics Using R

Fix the Heights

So as you can see in the histogram and in the scatterplot figures above for the Height variable,
there are 2 people with heights under 4 feet tall.

use dplyr::arrange()
library(dplyr)

mydata %>%
select(SubjectID, Height) %>%
arrange (Height) %>%
head ()

A tibble: 6 x 2
SubjectID Height
<dbl> <dbl>

1 28 2.6
2 8 3.3
3 9 5.1
4 6 5.2
5 2 5.4
6 12 5.5

Let’s look at these values:

e SubjectID number 28 has a Height of 2.6 feet tall

— If this wasn’t a made-up dataset, we could ask the original data collectors to see
if there is a way to check this value in their records or possibly to re-measure this
individual.

— For now, let’s assume this was a simple typo where the 2 numbers were transposed
where this individual should be 6.2 feet tall.

e SubjectID number 8 has a Height of 3.3 feet tall

— Unfortunately, this is probably not a simple typo. Without further details, we
should maybe set this to missing as an invalidated data point.

— As a side-note, I actually ran into this problem in a study where one of the partici-
pants was a paraplegic. So, this could be a legitimate height. But when computing
BMI, adjustments need to be made or alternative body metrics are needed.

— For now, we will set this to missing, NA_real_ which is missing for “real” numeric
variables.

emorytidal.netlify.app 14

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

make a copy of the dataset
mydata_corrected <- mydata

compute a new corrected height
fix heights for these 2 IDs
mydata_corrected <-
mydata_corrected %>%
mutate (Height_corrected = case_when(
(SubjectID == 28) ~ 6.2,
(SubjectID == 8) ~ NA_real_,
.default = Height
))

emorytidal.netlify.app

15

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Remake the histogram with the corrected heights.

make histogram as we did above
add freq = FALSE
hist(mydata_corrected$Height_corrected,

freq = FALSE,

xlab = "Height (in decimal inches)",

col = "lightblue",

border = "black",

main = "Histogram of Heights",

sub = "Hypothetical Madeup mydata Dataset")

add density curve line

add na.rm=TRUE to remove

the missing values in Height

lines(density(mydata_corrected$Height_corrected, na.rm=TRUE),
col = "black")

emorytidal.netlify.app

16

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

Histogram of Heights

1.0

0.8

Density

0.4

0.2
AN

0.0

I I I I
5.0 5.5 6.0 6.5

Height (in decimal inches)
Hypothetical Madeup mydata Dataset

CC BY-NCND 40 emorytidal.netlify.app 17

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Base R - Barchart

Let’s make a bar chart for the frequencies for the 3 SES categories:

o fill the bars with a yellow color specified by the HEX code #£7£445

o set the border color as darkgreen and make the border line thicker by updating the 1wd,

see Stack Overflow Post on bar width.

get table of frequencies for each category
tabl <- table(mydata_corrected$SES.f)

opar <- par() # save current plotting parameters
par(lwd = 3) # change border linewidth

make plot of the frequencies for
each category

barplot(tabl,
xlab = "SES Categories",
ylab = "Frequencies",
col = "#f7£445",
border = "darkgreen",
main = "Socio Economic Status Categories",

sub = "Hypothetical Madeup mydata Dataset")

emorytidal.netlify.app

18

https://www.project-tidal.org/
https://www.color-hex.com/color/f7f445
https://stackoverflow.com/questions/8795862/width-of-edge-of-the-bars-in-r-plots
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%/@:‘ Project TIDAL Module 1.3: Data Analytics Using R

Socio Economic Status Categories

12

10

Frequencies

low income average income high income

SES Categories
Hypothetical Madeup mydata Dataset

par(opar) # reset plotting parameters to defaults

emorytidal.netlify.app 19

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Base R - Boxplot

Make side-by-side boxplots of the heights by gender.

boxplot (Height_corrected ~ GenderCoded.f,
data = mydata_corrected,
xlab = "Gender",
ylab = "Height (in decimal feet)",
col = "#fb8efl",
border = "darkmagenta",
main = "Height by Gender",
sub = "Hypothetical Madeup mydata Dataset")

emorytidal.netlify.app 20

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

Height by Gender

6.0 6.2

Height (in decimal feet)
5.8

5.4

5.2

I I
Male Female

Gender
Hypothetical Madeup mydata Dataset

License [GCBYNCND 0 emorytidal.netlify.app 21

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%/@:‘ Project TIDAL Module 1.3: Data Analytics Using R

2. The ggplot2 package

The ggplot2 package name starts with gg which stands for the “grammar of graphics” which
is explained in the “ggplot2: Elegant Graphics for Data Analysis (3e)” Book.

1 Why is the package ggplot2 and not ggplot?

Many people often ask Hadley Wickham (the developer of ggplot2) what happened to
the first ggplot? Technically, there was a ggplot package and you can still view the
ggplot archived package versions on CRAN which date back to 2006 with the last version
posted in 2008. However, in 2007, Hadley redesigned the package and published the first
version of ggplot2 (version 0.5.1) was posted on CRAN. So, ggplot2 is the package
that has stayed in production and actively maintained for nearly 20 years!!

Given that ggplot2 has been actively maintained for nearly 20 years, it has become almost the
defacto graphical standard for R graphics. If you take a look at the list of packages on CRAN
that start with the letter “G”, as of this morning 01/28/2025 at 8:23 am EST, USA, there
are 230 packages that start with gg - nearly all of these are compatible packages that extend
the functionality or work in concert with the ggplot2 package. There are also currently 14
packages on the Bioconductor repository that start with gg.

Let’s make plots similar to the ones above but now using ggplot2. When making a ggplot2
plot, we build the plots using layers that get added to the previous layers.

emorytidal.netlify.app 22

https://www.project-tidal.org/
https://ggplot2-book.org/introduction#what-is-the-grammar-of-graphics
https://cran.r-project.org/src/contrib/Archive/ggplot/
https://cran.r-project.org/src/contrib/Archive/ggplot2/
https://cran.r-project.org/web/packages/available_packages_by_name.html#available-packages-G
https://cran.r-project.org/web/packages/available_packages_by_name.html#available-packages-G
https://www.bioconductor.org/packages/release/BiocViews.html#___Software
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

ggplot2 - Scatterplot

Here are the steps to building a scatterplot.

1. First, load the ggplot2 package, designate the dataset and variables (aesthetics) to be
included. This creates a plot space with nothing in it - we will add data in the next steps
below.

#load ggplot2
library(ggplot2)

create the plot space
ggplot(data = mydata_corrected,
aes(x = WeightPRE,

y = WeightP0OST))

emorytidal.netlify.app 23

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL

Module 1.3: Data Analytics Using R

200-

WeightPOST

150~

100~

50 100 150 200 250
WeightPRE

emorytidal.netlify.app 24

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@ Project TIDAL

Module 1.3: Data Analytics Using R

2. Next add + a “geometric object” or “geom” to show the data as points.

ggplot(data = mydata_corrected,

aes(x = WeightPRE,

y = WeightPOST)) +

geom_point ()

°
°
L4 °
°
200 - o .
°
°
=)
(72]
(@) °
Q
S °
o
= o
150 -
° °
°
°
°
100 -)
5I0 léO 260 ZéO
WeightPRE

emorytidal.netlify.app 25

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL

Module 1.3: Data Analytics Using R

3. We can add color by GenderCoded.f

1 Automatic Legend

Notice that by adding color = GenderCoded.f inside the aes() aesthetic that a legend
for the coloring of the points is automatically added to the plot. This can be disabled if
you wish. Learn more about colors and legends in the ggplot2 book - Chapter 11.

ggplot(data = mydata_corrected,
aes(x = WeightPRE,
y = WeightPOST,
color = GenderCoded.f)) +
geom_point ()

emorytidal.netlify.app 26

https://www.project-tidal.org/
https://ggplot2-book.org/scales-colour
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL

Module 1.3: Data Analytics Using R

[]
[]
o °
[]
200 - A °
[]
[]
5 ° GenderCoded.f
8 " e Male
.% ° ® Female
K3)
= o e NA
150 -
[] []
[]
[]
° []
100 - .
1 1 1 1 1
50 100 150 200 250
WeightPRE

emorytidal.netlify.app 27

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

4. We can also add labels, a title and better legend title

ggplot(data = mydata_corrected,
aes(x = WeightPRE,
y = WeightPOST,
color = GenderCoded.f)) +
geom_point() +
xlab("Weight (in pounds) before program") +
ylab("Weight (in pounds) after program") +
labs(
title = "Weights (in pounds) before and after",
subtitle = "Hypothetical Madeup mydata Dataset",
color = "Gender"

emorytidal.netlify.app 28

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

&«
& Project TIDAL Module 1.3: Data Analytics Using R

Weights (in pounds) before and after
Hypothetical Madeup mydata Dataset

e
< 200 =
o °
o
o
— []
2 0 Gender
© °
s Male
2 o
5 ® Female
o
o) ® NA
=
— 150~
% °
O
= .
°
100-
50 100 150 200 250

Weight (in pounds) before program

Notice that there are 4 weights that seem off. Also notice that the values are within a reasonable
range when considering PRE or POST separately, but when you put them together in a
scatterplot you can see that the values are off since we expect PRE and POST weights to be
somewhat similar.

e Two individuals have PRE weights that are < 100 pounds (bottom left side of plot).

— There is a good chance that these weights may have been accidentally recorded as
kg (kilograms) instead of in pounds.

¢ And there are 2 individuals with POST weights around 100-120 1bs, but for whom their

[License [cC BY-NC-ND 4.0 emorytidal.netlify.app 29

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

PRE weights were 225-260 1bs.

— There is a good chance that these two data points may have had a typo in the first
number (e.g. a weight of 110 should be 210).

o For this made-up dataset, it also appears that all 4 of these odd data points are Males.
It is a good idea to explore other “correlates” that may help identify underlying data
collection issues.

Let’s correct these values.

for WeightPRE < 100, convert kg to 1lbs
mydata_corrected <- mydata_corrected %>
mutate (WeightPRE_corrected = case_when(
(WeightPRE < 100) ~ WeightPRE * 2.20462,
.default = WeightPRE
))

For WeightPOST, for

SubjectID 28, change WeightPOST=98 to 198
since this person's WeightPRE was 230.
also fix SubjectID = 32, for

WeightPOST from 109 to 209 since

their WeightPRE was 260

H H H H R

mydata_corrected <- mydata_corrected 7%>%
mutate (WeightPOST_corrected = case_when(
(SubjectID == 28) ~ 198,
(SubjectID == 32) ~ 209,
.default = WeightPOST
))

emorytidal.netlify.app 30

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@“ Project TIDAL Module 1.3: Data Analytics Using R

Let’s redo the plot with these corrected values - now the PRE and POST weights look similar.

I've also added a “reference line” (in “red” color) to the plot below. By adding the line “Y =
X” we can also visualize which points are above or below the line for people who gained or lost
weight from PRE-to-POST, respectively. It looks like most people lost weight - the majority
of the points are below the line where PRE > POST weights.

I also:

o applied colors to each gender category,

o applied shapes to each gender category,

e changed the size of the points,

e assigned custom colors for each gender category,

— the colors are for the non-missing values
— if you want to see the person missing a gender, we have to specifically assign a color
for NA using na.value=

o assigned custom shapes for each gender category,

— the colors are for the non-missing values
— if you want to see the person missing a gender, we have to specifically assign a color
for NA using na.value=

e also notice that I had to provide a custom label in the 1abs() for the shape and color
legend - the labels are the same for color and shape so they will be in the same
legend box. It is possible to assign the variables for color and shape to different variables.

ggplot(data = mydata_corrected,
aes(x = WeightPRE_corrected,
y = WeightPOST_corrected,
color = GenderCoded.f,
shape = GenderCoded.f)) +
geom_point(size = 2) +
geom_abline(slope = 1,
intercept = 0,
color = "red") +
scale_shape_manual (values = c(16, 17),
na.value = 15) +
scale_color_manual (values = c("blue",
"magenta"),
na.value = "grey30") +
xlab("Weight (in pounds) before program") +
ylab("Weight (in pounds) after program") +
labs(
title = "Weights (in pounds) before and after",

CC BY-NC-D 4.0 emorytidal.netlify.app 31

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@“ Project TIDAL Module 1.3: Data Analytics Using R

subtitle = "Hypothetical Madeup mydata Dataset",
color = "Gender",
shape = "Gender"

)

Weights (in pounds) before and after
Hypothetical Madeup mydata Dataset

N
o
o
1
[]

Gender
® Male
A Female

E NA

150 -

Weight (in pounds) after program

150 200 250
Weight (in pounds) before program

emorytidal.netlify.app 32

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

ggplot2 - Histogram

Let’s make a histogram of Age and overlay a density curve like we did above for the heights,
but this time using the ggplot2 package functions.

The first step:

e specify the dataset mydata_corrected and “aesthetics” variable x=Age inside the

ggplot () step
e then add the geometric object geom_histogram()

ggplot(data = mydata_corrected,
aes(x = Age)) +
geom_histogram()

[Lcense [GEBY-NGND 4.0] emorytidal.netlify.app 33

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%3' Project TIDAL

Module 1.3: Data Analytics Using R

count

1 1
20 40 60 80 100
Age

emorytidal.netlify.app 34

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

Let’s add some color using fill= for the inside colors of the bars and color= for the border
color for the bars.

ggplot (mydata_corrected,
aes(x = Age)) +
geom_histogram(fill = "lightblue",
color = "black")

count

20 40 60 80 100
Age

CC BY-NC-ND 4.0 emorytidal.netlify.app 35

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

To add the density curve, we need to do 2 things:

1. Add an aesthetic aes() to change from counts (or frequencies) for the bars to probabil-
ities. We can do this using the after_stat () function.

e Learn more by running help(aes_eval, package = "ggplot2").

2. And then we can add the geom_density() geometric object and add color= for the
overlaid line color.

And I also added some better labels to the axes, title and subtitle.

ggplot (mydata_corrected,
aes(x = Age,
y = after_stat(density))) +
geom_histogram(fill = "lightblue",
color = "black") +

geom_density(color = "red") +
xlab("Age (in years)") +
ylab("Proportion") +
labs(

title = "Ages for Participants",

subtitle = "Hypothetical Madeup mydata Dataset"

emorytidal.netlify.app 36

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%)
/%@@ Project TIDAL

Module 1.3: Data Analytics Using R

Ages for Participants
Hypothetical Madeup mydata Dataset

0.100-

0.075-

0.050-

Proportion

0.025 -

0.000 -

20

40 60 80
Age (in years)

100

CC BY-NC-ND 4.0

emorytidal.netlify.app

37

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

ggplot2 - Boxplot (and variations)

Let’s look at the corrected PRE weights by SES.

ggplot(data = mydata_corrected,
aes(x = SES.f,
y = WeightPRE_corrected)) +
geom_boxplot ()

250 -

200 -

WeightPRE_corrected

150 - —

1 1 1
low income average income high income NA

SES.f

emorytidal.netlify.app 38

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@“ Project TIDAL Module 1.3: Data Analytics Using R

There is one person missing SES. So, let’s filter the dataset and remake the plot. Instead of
creating another “new” dataset, we can use the dplyr pipe %>% into our plotting workflow as
follows to filter out the missing SES before we make the plot. Notice I can drop the data =
in the ggplot () step.

In the filter () step below, I used the ! exclamation point to indicate that we want to keep
all rows for which SES.f is NOT missing, by using !is.na().

library(dplyr)

mydata_corrected %>/
filter(!is.na(SES.f)) %>%
ggplot (aes(x = SES.f,
y = WeightPRE_corrected)) +
geom_boxplot ()

CC BY-NC-D 4.0 emorytidal.netlify.app 39

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

250 -

200 -

WeightPRE_corrected

150 -

1 1 1
low income average income high income

SES.f

emorytidal.netlify.app 40

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

. Project TIDAL Module 1.3: Data Analytics Using R

Let’s add a fill color for the SES categories. Notice that a legend is automatically added to
the plot for the SES colors.

mydata_corrected %>%
filter(!is.na(SES.f)) %>%
ggplot(aes(x = SES.f,
y = WeightPRE_corrected,
f£ill = SES.f)) +
geom_boxplot ()

250 -
°
g
(&) -
g 200 SES.f
o
UI . low income
L
&: . average income
= high income
£ ES hig
)
=
150 -

low inlcome average income high irlmome
SESf

emorytidal.netlify.app 41

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

And add better axis labels plus a title and subtitle.

mydata_corrected %>%
filter(!is.na(SES.f)) %>%
ggplot(aes(x = SES.f,
y = WeightPRE_corrected,
fill = SES.f)) +
geom_boxplot() +
xlab("Socio-Economic Status Categories") +
ylab("Weight (in pounds) before program") +
labs(
title = "Weights by SES Categories",

subtitle = "Hypothetical Madeup mydata Dataset'
)

emorytidal.netlify.app 42

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

. Project TIDAL Module 1.3: Data Analytics Using R

Weights by SES Categories
Hypothetical Madeup mydata Dataset

250 -
E
g
)
o
S
o
= 200~
% SES.f
i ' low income
)
= ' average income
5
S ' high income
c
=
=
2
< 150-

1 1 1
low income average income high income

Socio—Economic Status Categories

License CC BY-NCND 410 emorytidal.netlify.app 43

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

Add Another Layer with Points

We can also add points on top of the boxplots using geom_jitter() AFTER using
geom_boxplot. If you switch the order of these “geom’s” you can specify whether the boxplot
is on top of the points or if the points are on top of the boxplots (like we did here).

In geom_jitter(), I also added height=0 and width=.10 to adjust the amount of jitter in
the vertical and horizontal directions.

mydata_corrected %>%
filter(!is.na(SES.f)) %>%
ggplot(aes(x = SES.f,
y = WeightPRE_corrected,
fill = SES.f)) +
geom_boxplot () +
geom_jitter (height=0,
width=.10) +
xlab("Socio-Economic Status Categories") +
ylab("Weight (in pounds) before program") +
labs(
title = "Weights by SES Categories",
subtitle = "Hypothetical Madeup mydata Dataset",
£fill = "SES Categories"
)

emorytidal.netlify.app 44

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

. Project TIDAL Module 1.3: Data Analytics Using R

Weights by SES Categories
Hypothetical Madeup mydata Dataset

250 - °

e
s
o))
o
S
o
o))
= 200- .
% SES Categories
% ' low income
2 ' average income
S
S ' high income
=)
N—r
o
c
2
g 150 -
°
°
. 1 1 i . . 1
low income average income high income

Socio—Economic Status Categories

A couple more packages to look at the distribution of data points by groups are:

e beeswarm

— R Graph Gallery Example of beeswarm
— beeswarm on CRAN

e ggbeeswarm on CRAN

emorytidal.netlify.app 45

https://www.project-tidal.org/
https://r-graph-gallery.com/beeswarm.html
https://cran.r-project.org/web/packages/beeswarm/index.html
https://cran.r-project.org/web/packages/ggbeeswarm/index.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@V Project TIDAL Module 1.3: Data Analytics Using R

Try Another Geom

One of the cool things about ggplot2 is the ability to easily swap out geom’s. Let’s try a
violin plot which provides a better idea of the shape of the underlying distributions that you
don’t get with a simple boxplot. Change geom_boxplot() to geom_violin(). I also added
the bw argument to change the “bandwidth” for how much smoothing is done. Try changing

this number and see what happens. Learn more by running help(geom_violin, package =

n ggpl ot2 n)

mydata_corrected %>’
filter(!is.na(SES.£)) %>%
ggplot(aes(x = SES.f,
y = WeightPRE_corrected,
fill = SES.f)) +
geom_violin(bw=10) +
xlab("Socio-Economic Status Categories") +
ylab("Weight (in pounds) before program") +
labs(
title = "Weights by SES Categories",
subtitle = "Hypothetical Madeup mydata Dataset"

)

emorytidal.netlify.app 46

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

. Project TIDAL Module 1.3: Data Analytics Using R

Weights by SES Categories
Hypothetical Madeup mydata Dataset

250 -
E
g
)
o
S
o
= 200~
L SES.f
3
— . low income
)
= . average income
5
S . high income
c
=
=
2
< 150-

1 1 1
low income average income high income

Socio—Economic Status Categories

emorytidal.netlify.app 47

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%3' Project TIDAL Module 1.3: Data Analytics Using R

ggplot2 - Barchart
Let’s make a simple barchart for SES.f after filtering out the NAs.

mydata_corrected %>%
filter('is.na(SES.f)) %>%
ggplot(aes(x = SES.f)) +
geom_bar ()

12.5-

10.0-

7.5-

count

5.0-

0.0-

1 1 1
low income average income high income

SES.f

emorytidal.netlify.app 48

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Let’s also make a clustered barplot of SES.f by GenderCoded.f. Let’s also filter out the NAs
from GenderCoded.f as well.

To add the 2nd grouping or clustering variable, we add £il1l= to the aesthetics and then add
position = "dodge" for geom_bar () to see the colors side by side instead of stacked.

mydata_corrected %>%
filter(!is.na(SES.f)) %>
filter(!is.na(GenderCoded.f)) %>%
ggplot(aes(x = SES.f,
fill = GenderCoded.f)) +
geom_bar (position = "dodge")

emorytidal.netlify.app 49

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

. Project TIDAL Module 1.3: Data Analytics Using R

6 -
4 -
GenderCoded.f
cC
§ . Male
. Female
2 -
O -

1 1
low income average income

SES.f

high income

License /CC BY-NC-ND 4.0

emorytidal.netlify.app 50

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Let’s also add custom colors and better labels. A few notes:

e fill controls the interior filled color for the bars
e color controls the border color of the bars
e scale_fill_manual () is where you add custom colors

mydata_corrected %>%
filter('is.na(SES.f)) %>%
filter(!is.na(GenderCoded.f)) %>%
ggplot (aes(x = SES.f,
fill = GenderCoded.f)) +
geom_bar (position = "dodge",
color = "black") +
scale_fill manual(values = c("blue",
"magenta")) +
xlab("Socio-Economic Status Categories") +
ylab("Frequency") +
labs(
title = "Frequencies of SES Categories by Gender"
subtitle = "Hypothetical Madeup mydata Dataset",
£fill = "Gender"

emorytidal.netlify.app 51

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@’ Project TIDAL Module 1.3: Data Analytics Using R

Frequencies of SES Categories by Gender
Hypothetical Madeup mydata Dataset

6-
>4 Gender
o
> . Male
o
ff . Female
2-
O-

1 1 1
low income average income high income

Socio—Economic Status Categories

emorytidal.netlify.app 52

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@
Project TIDAL Module 1.3: Data Analytics Using R

ggplot2 - Errorbar plots

Barplot with Error Bars

Suppose instead of boxplots for looking at the differences in heights by gender, let’s make a
plot of the mean heights by gender with error bars added to reflect the 95% confidence intervals
for these group means.

First let’s compute the means using the mean() function and we’ll pull the 95% confidence
interval limits from the t.test() output for a one-sample t-test (see details below).

Save these outputs into another small dataset called dt.
Let’s take a look at the t.test() output.

We can run a one-sample t-test to test whether the mean of the Heights is different from O.
This will result in a p-value for this hypothesis test. The t.test() output can also be used
to evaluate to see whether or not the 95% confidence interval contains 0 or not.

Hy: Kheight = 0

versus

Ha : /Lheight 7& 0

run one-sample t-test and save the output

into an object called ttl

ttl <- t.test(mydata_corrected$Height_corrected,
conf.level = 0.95)

If we print the tt1 object to the console, we get the abbreviated t-test results which gives us
the t-test statistic, p-value, the mean of the heights and the 95% confidence interval for that
mean (which does not include 0).

ttl

One Sample t-test

data: mydata_corrected$Height_corrected
t = 61.664, df = 18, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
5.658315 6.057475

emorytidal.netlify.app 53

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

&«
& Project TIDAL Module 1.3: Data Analytics Using R

sample estimates:
mean of x
5.857895

But the tt1 t-test output object actually has a bunch of details stored inside it. Let’s look at
the structure of the tt1 t-test object:

str(ttl)

List of 10
$ statistic : Named num 61.7
..— attr(x, "names")= chr "t"

$ parameter : Named num 18
..— attr(x, "names")= chr "df"
$ p.value : num 2.13e-22
$ conf.int : num [1:2] 5.66 6.06
..— attr(*, "conf.level")= num 0.95
$ estimate : Named num 5.86

..— attr(x, "names")= chr "mean of x"
$ null.value : Named num O
..— attr(x, "names")= chr "mean"

$ stderr : num 0.095

$ alternative: chr "two.sided"

$ method : chr "One Sample t-test"

$ data.name : chr "mydata_corrected$Height_corrected"

- attr(x, "class")= chr "htest"

We can select elements of this t-test object just like we select variables out of a dataset using
the $ dollar sign selector. Let’s take a look at the conf.int part of the t-test object for the
95% confidence interval limits.

tti1$conf.int

[1] 5.658315 6.057475
attr(,"conf.level")
[1] 0.95

We can further pull out each limit separately using the [1 square brackets to pull specifically
the first element [1] for the lower limit of the 95% confidence interval and the second element
[2] for the upper limit of the 95% confidence interval.

tti$conf.int[1]

[License [cC BY-NC-ND 4.0 emorytidal.netlify.app 54

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

[1] 5.658315

tti1$conf.int[2]

[1] 6.057475

So, we will save these components from the t-test output inside the mutate step in the code
below to make sure we capture the lower confidence interval 1ci and upper confidence interval

uci for each gender category which we will later use for making our error bars.

capture the means of the correct heights
and get the 957, confidence intervals
upper bound and lower bound by gender
filter out the missing GenderCoded.f
dt <- mydata_corrected %>%
filter(!is.na(GenderCoded.f)) %>/
dplyr: :group_by(GenderCoded. £)%>%
dplyr: :summarise(
mean = mean(Height_corrected, na.rm = TRUE),
lci = t.test(Height_corrected,
conf.level = 0.95)$conf.int[1],
uci = t.test(Height_corrected,
conf.level = 0.95)$conf.int[2])
dt

A tibble: 2 x 4
GenderCoded.f mean lci uci

<fct> <dbl> <dbl> <dbl>
1 Male 6.1 5.86 6.34
2 Female 5.59 5.30 5.88

emorytidal.netlify.app

55

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Use this small dataset dt with the means and 95% confidence intervals limits to make this
plot.

ggplot(data = dt) +
geom_bar (aes(x = GenderCoded.f,

y = mean,
fill = GenderCoded.f),
color = "black",

stat="identity") +
scale_fill manual(values = c("blue",
"magenta")) +
geom_errorbar(aes(x = GenderCoded.f,
ymin = lci,
ymax = uci),
width = 0.4,
color ="black",
size = 1) +
xlab("Gender") +
ylab("Mean Height (in decimal feet)") +
labs(
title = "Average Heights by Gender",
subtitle = "Hypothetical Madeup mydata Dataset",
caption = "Error Bars Represent 95J Confidence Intervals",
£fill = "Gender"

emorytidal.netlify.app 56

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Average Heights by Gender
Hypothetical Madeup mydata Dataset

. Female

Mean Height (in decimal feet)

0-

1 1
Male Female
Gender

Error Bars Represent 95% Confidence Intervals

emorytidal.netlify.app 57

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Lineplot with Points and Error Bars

We can also remove the bars and just create a line plot connecting the points for the means
with the error bars shown. I set size=1.5to make the lines a little thicker in the plot.

ggplot(data = dt) +
geom_point(aes(x = GenderCoded.f,
y = mean,
color = GenderCoded.f),
size = 3) +
geom_errorbar(aes(x = GenderCoded.f,
ymin = lci,
ymax = uci,
color = GenderCoded.f),
width = 0.4,
size = 1.5) +
geom_line(aes(x = GenderCoded.f,
y = mean),
group = 1,
size = 1.5,
color = "black") +
scale_color_manual(values = c("blue",
"magenta')) +
xlab("Gender") +
ylab("Mean Height (in decimal feet)") +
labs(
title = "Average Heights by Gender",
subtitle = "Hypothetical Madeup mydata Dataset",
caption = "Error Bars Represent 95% Confidence Intervals",
color = "Gender"

emorytidal.netlify.app 98

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@
Project TIDAL Module 1.3: Data Analytics Using R

Average Heights by Gender
Hypothetical Madeup mydata Dataset

6.2-

6.0-

— Gender

@= Male
@ Female

5.8-

Mean Height (in decimal feet)

5.4-

Male Female
Gender

Error Bars Represent 95% Confidence Intervals

emorytidal.netlify.app 59

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

% Project TIDAL

Module 1.3: Data Analytics Using R

ggplot2 - Lollipop plots

Another plot that can be useful to help visualize changes between two time points,like PRE-
to-POST changes is using a “lollipop” plot which utilizes the geom_segment () to create line

segments with points (the lollipops) on each end.

The plot below was inspired by the code example at https://r-graph-gallery.com/303-lollipop-

plot-with-2-values.html.

Let’s look at the corrected Weights PRE to POST- sorted by their starting PRE weights.

sort data by WeightPRE_corrected ascending
data <- mydata_corrected %>

rowwise() %>%

arrange (WeightPRE_corrected) %>%

mutate (SubjectID = factor(SubjectID, SubjectID))

Plot
ggplot(data) +
geom_segment (aes(x = SubjectID,
xend = SubjectID,
y = WeightPRE_corrected,

yend = WeightPOST_corrected),

color = "grey30") +
geom_point(aes(x = SubjectID,
y = WeightPRE_corrected,

color = "WeightPRE_corrected"),

size = 3) +
geom_point(aes(x = SubjectID,
y = WeightPOST_corrected,

color = "WeightPOST_corrected"),

size = 3) +

scale_color_manual(

labels = c("PRE", "POST"),

values = c("coral","darkblue"),

guide guide_legend(),

name = "Group") +
coord_flip() +
theme (legend.position = "bottom") +
xlab("Subject IDs") +
ylab("Weight Change (in pounds) PRE to POST")

emorytidal.netlify.app

60

https://www.project-tidal.org/
https://r-graph-gallery.com/303-lollipop-plot-with-2-values.html
https://r-graph-gallery.com/303-lollipop-plot-with-2-values.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

Subject IDs
B NN P W P N PONN N ow Z
© 0 W KL o N N M P MO O MN O OON OGO N D
1 1

150 200 250
Weight Change (in pounds) PRE to POST

Group @ PRE @ POST

emorytidal.netlify.app 61

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

3. Other Graphics Packages to Know

Save plot objects and reuse/rearrange them

Once a “chunk” of ggplot code is run, technically a ggplot2 plot object is created. We can

save and reuse these objects to create composite figures.

For example, let’s create the scatterplot, histogram and clustered barplot and save each into

three separate plot objects p1, p2, and p3.
make the scatterplot, save as pl

pl <- ggplot(

data = mydata_corrected,

aes(
x = WeightPRE_corrected,
y = WeightPOST_corrected,
color = GenderCoded.f,
shape = GenderCoded.f

)) +

geom_point(size = 2) +

geom_abline(slope = 1,

intercept = 0,

color = "red") +
scale_shape_manual (values = c(16, 17), na.value = 15) +
scale_color_manual(values = c("blue", "magenta"),
na.value = "grey30") +

xlab("Weight (in pounds) before program") +
ylab("Weight (in pounds) after program") +
labs(
title = "Weights (in pounds) before and after",
subtitle = "Hypothetical Madeup mydata Dataset",
color = "Gender",
shape = "Gender"

make the histogram, save as p2

p2 <- ggplot(mydata_corrected,
aes(x = Age,
y = after_stat(density))) +
geom_histogram(fill = "lightblue", color = "black") +
geom_density(color = "red") +

emorytidal.netlify.app

62

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

L Project TIDAL Module 1.3: Data Analytics Using R

xlab("Age (in years)") +
ylab("Proportion") +
labs(title = "Ages for Participants",
subtitle = "Hypothetical Madeup mydata Dataset")

make the barplot, save as p3

p3 <- mydata_corrected 7%>%
filter(!is.na(SES.f)) %>%
filter(!is.na(GenderCoded.f)) %>%
ggplot(aes(x = SES.f,
fill = GenderCoded.f)) +
geom_bar (position = "dodge",
color = "black") +
scale fill manual(values = c("blue",
"magenta')) +
xlab("Socio-Economic Status Categories") +
ylab("Frequency") +
labs(
title = "Frequencies of SES Categories by Gender",
subtitle = "Hypothetical Madeup mydata Dataset",
£ill = "Gender"

emorytidal.netlify.app 63

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

patchwork package

After making and saving each of the ggplot2 plot objects above, we can arrange them into
a new composite plot. The patchwork package is really good for making these composite
figures.

Learn more at https://patchwork.data-imaginist.com/articles/patchwork.html

load patchwork package
library(patchwork)

put pl and p2 side-by-side
and put both of these on top of p3
(p1 + p2) / p3

emorytidal.netlify.app 64

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/patchwork/index.html
https://patchwork.data-imaginist.com/articles/patchwork.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Weight (in pounds) after program

200 -

150-

Weights (in pounds) before and after Ages for Participants

Hypothetical Madeup mydata Dataset Hypothetical Madeup mydata Datas
0.100-

0.075-
Gender

® Male : 1
0.050 -
A Female |
E NA '
0.025- M
0.000 - l /[|

léO 2(I)0 2':I'>O 20 40 60 80 100

Proportion

Weight (in pounds) before program Age (in years)

Frequency

Frequencies of SES Categories by Gender
Hypothetical Madeup mydata Dataset

6 -
Gender
4 -
Male
Female
0 -

low inlcome average income high income
Socio—Economic Status Categories

[Lcense [GEBY-NGND 4.0] emorytidal.netlify.app 65

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

ggpubr package and ggarrange() function

Another package that is useful for arrange plot objects into composite plots is the ggpubr
package with the ggarrange () function.

load ggpubr package
library(ggpubr)

use ggarrange twice

put pl and p2 side by side

then put on top of p3

ggarrange (
ggarrange(pl, p2, widths = c(1, 1)),
p3, nrow = 2, ncol = 1)

emorytidal.netlify.app 66

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/ggpubr/
https://cran.r-project.org/web/packages/ggpubr/
https://rpkgs.datanovia.com/ggpubr/reference/ggarrange.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Weights (in pounds) before anc Ages for Participants
Hypothetical Madeup mydata Datase Hypothetical Madeup mydata Data:
% 0.100- =
o
o
o —
= 0.075-
& 200- Gender -
5] o T
w ® Male b=
o o 0.050-
= A Female & i
3 150- ENA o 'l \
= 0.025- i
: 1
R
) 0.000 -
= 150 200 250 20 40 60 80 100
Weight (in pounds) before program Age (in years)

Frequencies of SES Categories by Gender
Hypothetical Madeup mydata Dataset

6 -
) Gender
5 4
=) . Male
o
ff . Female
2 -
O -

1 1
low income average income high income
Socio—Economic Status Categories

[Lcense [GEBY-NGND 4.0] emorytidal.netlify.app 67

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@u Project TIDAL Module 1.3: Data Analytics Using R

GGally package and ggpairs() function

If you would like to make a scatterplot matrix to look at the associations (correlations) between
multiple numeric variables at the same time, the GGally: :ggpairs() function is useful.

In the plot below, we can see the 2-dimensional scatterplots between the heights and weights
at PRE and POST. The plot also provides the Pearson’s correlations for all of the pairwise
associations between each combination of 2 variables.

I also added a “best fit” linear line by adding lower = list(continuous = "smooth").

library(GGally)

ggpairs(mydata_corrected,
columns = c("Height_corrected",
"WeightPRE_corrected",
"WeightPOST_corrected"),
lower = list(continuous = "smooth"))

emorytidal.netlify.app 68

https://www.project-tidal.org/
https://ggobi.github.io/ggally/articles/ggpairs.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%/@:‘ Project TIDAL Module 1.3: Data Analytics Using R

Height_corrected WeightPRE_corrected WeightPOST_corrected
0.8-
0.6- %
S
0.4+ Corr: Corr: I~
0.869*** 0.866*** %
<l
0.2- 2]
0.0-
250~
=3
@
«Q
=
200+ Corr: 2
m
0.950*** 'g
150 - o
®
oL
[}
5
«Q
200 - S
U
o]
0
|—|
8
150 - =
D
Q
@
o
55 6.0 6.5 150 200 250 150 200

emorytidal.netlify.app 69

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@u Project TIDAL Module 1.3: Data Analytics Using R

What is really cool about this plotting function is the easy way to add in a 3rd variable
like gender to see if these correlations (and scatterplots) change by gender (i.e. does gender
moderate the associations?). Notice that we get separate lines for each gender and we get the
correlations for each gender as well.

If you look at the correlations by gender between Height_corrected and WeightPOST_corrected
the correlation for Males was 0.692 and for Females was 0.913, so it does look like the cor-
relation is stronger for the Females than the Males. For this made-up dataset, this doesn’t
matter. But this approach is a good way to start exploring your data for moderating effects.

ggpairs(mydata_corrected,
mapping = aes(color = GenderCoded.f),
columns = c("Height_corrected",
"WeightPRE_corrected",
"WeightPOST_corrected"),
lower = list(continuous = "smooth"))

emorytidal.netlify.app 70

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

Project TIDAL Module 1.3: Data Analytics Using R

Height_corrected WeightPRE_corrected WeightPOST_corrected
Corr: 0.875*** Corr: 0.878***

T
@,
S
Male: 0.772* Male: 0.692* I
o
@
e
@
Female: 0.821* Female: 0.913** =
250 Corr: 0.945%* <
@,
«Q
=
.. U
200 Male: 0.918%* | @
IO
)
150 - §
Female: 0.961*** ©
5
«Q
200 - >
U
O
%)
|—|
8
150 - 3
D
Q
@
o

55 6.0 65 150 200 250 150 200

License |GG BY-NC-ND 4.0 emorytidal.netlify.app 71

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

And if we add GenderCoded.f to the list of variable columns to be included, we now also
get bar charts for the frequencies of each gender, histograms of each variable for each gender,
boxplots for each variable by each gender, along with the density curves by gender and the

correlation matrix.

ggpairs(mydata_corrected,
mapping = aes(color = GenderCoded.f),
columns = c("GenderCoded.f",
"Height _corrected",
"WeightPRE_corrected",
"WeightPOST_corrected"),
lower = list(continuous = "smooth"))

emorytidal.netlify.app

72

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

. Project TIDAL Module 1.3: Data Analytics Using R

GenderCoded.f Height_corrected WeightPRE_corrected WeightPOST _correctec
[] —' [N J @
=
[oX
()
0
. o
oL
Corr: 0.875*** Corr: 0.878*** ¢
(0]
—_— 6.
6.0 - =
LLELH | (e Male: 0.772** Male: 0.692* I8
55- e I 8
T Female: 0.821* Female: 0.913* '@
T} e =3
250 - Corr: 0.945%** @
- S
L T
200° = Male: 0.918*+ | &
I
I 8
150 == - =]
- Female: 0.961*** @
(0]
100- = - -
250-__ S
@
I «%
200 - = o 3
|] %)
= n
150 ~ o — _8_‘
a— I a
Q
—_— g
0.0.5.0.2000.5.0.2000.5.0.3.0 5.5 6.0 6.5 150 200 250 150 200

License [CCBENCND 4.0 emorytidal.netlify.app 73

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@u Project TIDAL Module 1.3: Data Analytics Using R

Visualize Categorical Data with vcd package

The ved package for “visualizing categorical data” has been around for over 20 years!! It is a
helpful package for visualizing multiple categorical variables at once.

Let’s visualize the relative proportions of gender and SES using the ved: :mosaic () function.

library(vecd)

vcd: :mosaic(GenderCoded.f ~ SES.f,
data = mydata_corrected,
gp = gpar(fill = c("gray","dark magenta'")),
main = "Gender and SES",

)

emorytidal.netlify.app 74

https://www.project-tidal.org/
https://cran.r-project.org/web/packages/vcd/index.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

Gender and SES

GenderCoded.f
Male Female

low income

SESf
average income

high income

[Lcense [GEBY-NGND 4.0] emorytidal.netlify.app 75

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%’. Project TIDAL Module 1.3: Data Analytics Using R

Example of an animated graph with gganimate

Learn how to make an animated figure with the gganimate package at https://gganimate.
com/. The animation demo shown below is of the relationship between Life Expectancy and
GDP (gross domestic product) per capita in 142 countries over 12 years from 1952 to 2007.

The animated figure is viewable in the HTML website at https://melindahiggins2000.github.
io/emory__tidal _Rlectures/module133_DataVis.html. In the PDF file only a static view is
shown for the single year “1976” from the gapminder dataset and R package.

Year: 1976
Africa Americas Asia

80 -

i -
“ eeqite v i Y .

=

g
E 1 L] L
. 1e+03 1e+04 1e+05
g Europe Oceania
[H]
o 80-
=
Py o
60 = O
40-
L] L] L] L] L} L]
1e+03 1e+04 1e+05 1e+03 1e+04 1e+05

GDP per capita

emorytidal.netlify.app 76

https://www.project-tidal.org/
https://gganimate.com/
https://gganimate.com/
https://melindahiggins2000.github.io/emory_tidal_Rlectures/module133_DataVis.html
https://melindahiggins2000.github.io/emory_tidal_Rlectures/module133_DataVis.html
https://jennybc.github.io/gapminder/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@“ Project TIDAL Module 1.3: Data Analytics Using R

Interactive Graphics with plotly

Another cool package is the plotly graphics package which allows for active interaction with
the plot. This works in the RStudio environment (viewing in the “Viewer” window) and from
within an HTML formatted document rendered from Rmarkdown.

Learn more at https://plotly-r.com/.

Here is an interactive version (on this website for the HTML version) of the side-by-side
boxplots below - with a horizontal orientation. This plot will NOT be interactive in the PDF
document but the figure will be shown.

library(plotly)
fig <- plot_ly(mydata_corrected,
x = ~WeightPRE_corrected,
color = ~SES.f,
type = "box",
orientation = "h")
fig

emorytidal.netlify.app 77

https://www.project-tidal.org/
https://plotly-r.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

& Project TIDAL Module 1.3: Data Analytics Using R

high income

average income

low income

ense CC BY-NC-ND 4.0 emorytidal.netlify.app 78

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%@; Project TIDAL Module 1.3: Data Analytics Using R

4. Summary Tables with Graphics

There are a number of other packages that allow you to insert small graphs or figures inside
of a table.

The R Graph Gallery has a nice summary of table packages with these features. Some of these
packages include:

o gtExtras

e huxtable

e flextable

e skimr

¢ modelsummary
e rhandsontable

As an example, let’s look at the code at https://r-graph-gallery.com/368-plotting-in-cells-
with-gtextras.html for making a table of summary statistics with a plot overview including a
list of categories and percentage of missing data for that variable.

library(gtExtras)

mydata_corrected %>/
select (Height_corrected,
WeightPRE_corrected,
WeightP0OST_corrected,
GenderCoded. f,
SES.f) %>%
gt_plt_summary()

[Lcense [GEBY-NGND 4.0] emorytidal.netlify.app 79

https://www.project-tidal.org/
https://r-graph-gallery.com/table.html
https://cran.r-project.org/web/packages/gtExtras/index.html
https://cran.r-project.org/web/packages/huxtable/index.html
https://ardata-fr.github.io/flextable-book/index.html#help-and-resources
https://cran.r-project.org/web/packages/skimr/index.html
https://modelsummary.com/vignettes/datasummary.html
https://cran.r-project.org/web/packages/rhandsontable/index.html
https://r-graph-gallery.com/368-plotting-in-cells-with-gtextras.html
https://r-graph-gallery.com/368-plotting-in-cells-with-gtextras.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

%" Project TIDAL Module 1.3: Data Analytics Using R

21rows x5 cols

COLUMN PLOT OVERVIEW MISSING MEAN MEDIAN SD
.|||| Height_corrected — | — 95% 5.9 58 04
,|||| WeightPRE_corrected — | — 48% 192.9 1900 423
..|I| WeightPOST _corrected e | - 48% 1822 1900 35.9
i= » GenderCoded.f 5 9.5% - -
i= » SESf _ 9.5% - - -

3 categories

emorytidal.netlify.app 80

https://www.project-tidal.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@
Project TIDAL Module 1.3: Data Analytics Using R

5. Other Places to Get Help and Get Started

e See the summary of graphics resources at Additional Resources - R Graphics

R Code For This Module

e module_133.R

References

Tannone, Richard, Joe Cheng, Barret Schloerke, Ellis Hughes, Alexandra Lauer, JooYoung
Seo, Ken Brevoort, and Olivier Roy. 2024. Gt: Easily Create Presentation-Ready Display
Tables. https://gt.rstudio.com.

Kassambara, Alboukadel. 2023. Ggpubr: Ggplot2 Based Publication Ready Plots. https:
/ /rpkgs.datanovia.com/ggpubr/.

Meyer, David, Achim Zeileis, and Kurt Hornik. 2006. “The Strucplot Framework: Visualizing
Multi-Way Contingency Tables with Ved.” Journal of Statistical Software 17 (3): 1-48.
https://doi.org/10.18637 /jss.v017.i03.

Meyer, David, Achim Zeileis, Kurt Hornik, and Michael Friendly. 2023. Ved: Visualizing
Categorical Data. https://doi.org/10.32614/CRAN.package.vcd.

Mock, Thomas. 2024. gtExtras: Extending Gt for Beautiful HTML Tables. https://github.
com/jthomasmock/gtExtras.

Pedersen, Thomas Lin. 2024. Patchwork: The Composer of Plots. https://patchwork.data-
imaginist.com.

R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz Marbach, Edwin
Thoen, Amos Elberg, and Jason Crowley. 2024. GGally: Extension to Ggplot2. https:
//ggobi.github.io/ggally/.

Sievert, Carson. 2020. Interactive Web-Based Data Visualization with r, Plotly, and Shiny.
Chapman; Hall/CRC. https://plotly-r.com.

Sievert, Carson, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne
Corvellec, and Pedro Despouy. 2024. Plotly: Create Interactive Web Graphics via Plotly.js.
https://plotly-r.com.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. https://ggplot2.tidyverse.org.

emorytidal.netlify.app 81

https://www.project-tidal.org/
./additionalResources.html#r-graphics
https://gt.rstudio.com
https://rpkgs.datanovia.com/ggpubr/
https://rpkgs.datanovia.com/ggpubr/
https://doi.org/10.18637/jss.v017.i03
https://doi.org/10.32614/CRAN.package.vcd
https://github.com/jthomasmock/gtExtras
https://github.com/jthomasmock/gtExtras
https://patchwork.data-imaginist.com
https://patchwork.data-imaginist.com
https://www.R-project.org/
https://ggobi.github.io/ggally/
https://ggobi.github.io/ggally/
https://plotly-r.com
https://plotly-r.com
https://ggplot2.tidyverse.org
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

@
Project TIDAL Module 1.3: Data Analytics Using R

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi,
Claus Wilke, Kara Woo, Hiroaki Yutani, Dewey Dunnington, and Teun van den Brand.
2024. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https:

//ggplot2.tidyverse.org.

Wickham, Hadley, Romain Francois, Lionel Henry, Kirill Miiller, and Davis Vaughan. 2023.
Dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org.

Zeileis, Achim, David Meyer, and Kurt Hornik. 2007. “Residual-Based Shadings for Visual-
izing (Conditional) Independence.” Journal of Computational and Graphical Statistics 16
(3): 507-25. https://doi.org/10.1198/106186007X237856.

Other Helpful Resources

Other Helpful Resources

emorytidal.netlify.app 82

https://www.project-tidal.org/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://dplyr.tidyverse.org
https://doi.org/10.1198/106186007X237856
./additionalResources.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
emorytidal.netlify.app

	Session Objectives
	0. Prework - Before You Begin
	A. Install packages
	B. Open/create your RStudio project
	C. Create a new R script and load data into your computing session
	D. Get Inspired!

	1. Base R graphical functions
	Base R - Scatterplot
	Base R - Histogram
	Base R - Barchart
	Base R - Boxplot

	2. The ggplot2 package
	ggplot2 - Scatterplot
	ggplot2 - Histogram
	ggplot2 - Boxplot (and variations)
	ggplot2 - Barchart
	ggplot2 - Errorbar plots
	ggplot2 - Lollipop plots

	3. Other Graphics Packages to Know
	Save plot objects and reuse/rearrange them
	GGally package and ggpairs() function
	Visualize Categorical Data with vcd package
	Example of an animated graph with gganimate
	Interactive Graphics with plotly

	4. Summary Tables with Graphics
	5. Other Places to Get Help and Get Started
	R Code For This Module
	References
	Other Helpful Resources

